Advanced temperature control in ethanol fermentation using a PSO-PID controller with split-range control strategy.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Raju Yerolla, Suhailam P, Chandra Shekar Besta
{"title":"Advanced temperature control in ethanol fermentation using a PSO-PID controller with split-range control strategy.","authors":"Raju Yerolla, Suhailam P, Chandra Shekar Besta","doi":"10.1080/10826068.2024.2381761","DOIUrl":null,"url":null,"abstract":"<p><p>Global energy demand is experiencing a notable surge due to growing energy security. Renewable energy sources, like ethanol, are becoming more viable. In the present study, the application of a PSO-PID (Particle Swarm Optimization - Proportional Integral Derivative) controller with a split-range control strategy was suggested for the regulation of temperature within the fermentation system. To optimize performance, a POS-PID controller with a split-range arrangement utilizing two control valves for hot and cold utilities was constructed. The study began by examining the open-loop dynamic response of the system to inlet temperature and concentration disturbances during ethanol production fermentation. Subsequently, a transfer function model was developed through linearization at the steady-state operating point. The split-range controller structure, implemented by optimizing the PSO-PID controller parameters using PSO, effectively demonstrated temperature control in simulations of a nonlinear model. In this investigation, the ethanol fermentation system was modeled as a CSTR using a modified Monod equation for microbial growth kinetics. Various dynamic behavioral disturbances were explored and verified in the model with plant data in this study. The simulation model results were validated through plant data. The proposed method showed superior closed-loop performance with respect to errors, with the actuators proving to be effective than other reported methods for temperature control.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2381761","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Global energy demand is experiencing a notable surge due to growing energy security. Renewable energy sources, like ethanol, are becoming more viable. In the present study, the application of a PSO-PID (Particle Swarm Optimization - Proportional Integral Derivative) controller with a split-range control strategy was suggested for the regulation of temperature within the fermentation system. To optimize performance, a POS-PID controller with a split-range arrangement utilizing two control valves for hot and cold utilities was constructed. The study began by examining the open-loop dynamic response of the system to inlet temperature and concentration disturbances during ethanol production fermentation. Subsequently, a transfer function model was developed through linearization at the steady-state operating point. The split-range controller structure, implemented by optimizing the PSO-PID controller parameters using PSO, effectively demonstrated temperature control in simulations of a nonlinear model. In this investigation, the ethanol fermentation system was modeled as a CSTR using a modified Monod equation for microbial growth kinetics. Various dynamic behavioral disturbances were explored and verified in the model with plant data in this study. The simulation model results were validated through plant data. The proposed method showed superior closed-loop performance with respect to errors, with the actuators proving to be effective than other reported methods for temperature control.

采用分程控制策略的 PSO-PID 控制器在乙醇发酵过程中实现先进的温度控制。
由于能源安全不断加强,全球能源需求明显激增。乙醇等可再生能源正变得越来越可行。在本研究中,建议应用具有分段控制策略的 PSO-PID(粒子群优化-比例积分微分)控制器来调节发酵系统内的温度。为了优化性能,我们构建了一个 POS-PID 控制器,利用两个控制阀对冷热设备进行分段控制。研究首先考察了乙醇生产发酵过程中系统对入口温度和浓度干扰的开环动态响应。随后,在稳态工作点通过线性化建立了传递函数模型。通过使用 PSO 优化 PSO-PID 控制器参数,实现了分程控制器结构,在非线性模型的模拟中有效地展示了温度控制。在这项研究中,乙醇发酵系统被建模为一个 CSTR,使用了微生物生长动力学的修正莫诺方程。本研究利用工厂数据对模型中的各种动态行为干扰进行了探索和验证。模拟模型的结果通过工厂数据得到了验证。与其他已报道的温度控制方法相比,所提出的方法在误差方面表现出更优越的闭环性能,同时证明了执行器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信