Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan
{"title":"Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone.","authors":"Nwife Getrude Okechukwu, Christian Klein, Hélène Jamann, Michel Maitre, Christine Patte-Mensah, Ayikoé-Guy Mensah-Nyagan","doi":"10.1007/s12640-024-00715-1","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 4","pages":"37"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00715-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.

Abstract Image

单体淀粉样肽诱导的人类少突胶质细胞系和小鼠脑初级混合胶质细胞培养物的毒性:神经类固醇 3α-O-allyl-allopregnanolone 的神经保护作用证据。
无症状阿尔茨海默病(AD)大脑中出现的淀粉样肽(Aβ)单体(ABM)被认为没有神经毒性,而ABM向低聚物的转变/聚集是Aβ诱导毒性的决定性因素,因为Aβ在3 µM以下主要是单体,超过这一浓度就会聚集。然而,最近的成像和/或组织病理学研究发现,在没有聚集的 Aβ 寡聚体的情况下,AD 前驱期大脑中的髓鞘发生了改变,这表明 ABM 可能会诱导 AD 早期阶段的髓鞘生成细胞中毒。为了验证这一假设,我们在这里研究了 ABM 对人类少突胶质细胞系(HOG)活力的影响,HOG 是产生髓鞘蛋白的可靠少突胶质细胞模型。此外,为了密切模拟少突胶质细胞与其他神经胶质细胞之间调节髓鞘化的相互作用,我们还研究了 ABM 对小鼠大脑原代混合神经胶质细胞培养物的影响。各种方法的综合结果表明,ABM 浓度(600 nM-1 µM)极低于 3 µM,会显著降低 HOG 细胞和小鼠脑原代混合胶质细胞的存活率。有趣的是,使用特定细胞类型标记物进行的流式细胞术研究表明,少突胶质细胞是最容易受到 ABM 毒性影响的胶质细胞群。我们的研究还表明,神经类固醇 3α-O-allyl-allopregnanolone BR351(250 nM 和 500 nM)能有效防止 ABM 诱导的 HOG 和脑初级神经胶质细胞毒性。GABA-A受体拮抗剂双谷氨酸(50-100 nM)无法阻断/降低 BR351 对 ABM 诱导的 HOG 和原代胶质细胞毒性的影响,这表明 BR351 对这些细胞诱发的神经保护作用可能并不依赖于神经类固醇对 GABA-A 受体的异构调节。总之,我们的研究结果表明,进一步探索 BR351 的治疗潜力可能会为开发有效的神经保护策略提供有趣的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信