Fernando Osuna-Lopez, J. Manuel Herrera-Zamora, Miriam E. Reyes-Méndez, Raúl A. Aguilar-Roblero, Enrique A. Sánchez-Pastor, Ricardo A. Navarro-Polanco, Eloy G. Moreno-Galindo, Javier Alamilla
{"title":"Age-, region-, and day/night-related variation of the chloride reversal potential in the rat suprachiasmatic nucleus","authors":"Fernando Osuna-Lopez, J. Manuel Herrera-Zamora, Miriam E. Reyes-Méndez, Raúl A. Aguilar-Roblero, Enrique A. Sánchez-Pastor, Ricardo A. Navarro-Polanco, Eloy G. Moreno-Galindo, Javier Alamilla","doi":"10.1002/jnr.25373","DOIUrl":null,"url":null,"abstract":"<p>The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (E<sub>Cl</sub>) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that E<sub>Cl</sub> greatly varied with age and depending on the SCN region and time of day. Broadly speaking, E<sub>Cl</sub> was more hyperpolarized with age, except for the oldest age studied (P20–25) in both day and night in the ventral SCN, where it was less negative. Likewise, E<sub>Cl</sub> was more hyperpolarized in the dorsal SCN both during the day and at night; while E<sub>Cl</sub> was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl<sup>−</sup>]<sub>i</sub> to fine-tune E<sub>Cl</sub>, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25373","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20–25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl−]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.