Ryan Chaban, Ikechukwu Ileka, Gannon McGrath, Kohei Kinoshita, Zahra Habibabady, Madelyn Ma, Victoria Diaz, Akihiro Maenaka, Anthony Calhoun, Megan Dufault, Ivy Rosales, Christiana M Laguerre, Seyed-Amir Sanatkar, Lars Burdorf, David L Ayares, William Eyestone, Prachi Sardana, Kasinath Kuravi, Lori Sorrells, Seth Lederman, Caroline G Lucas, Randall S Prather, Kevin D Wells, Kristin M Whitworth, David K C Cooper, Richard N Pierson
{"title":"Extended survival of 9- and 10-gene-edited pig heart xenografts with ischemia minimization and CD154 costimulation blockade-based immunosuppression.","authors":"Ryan Chaban, Ikechukwu Ileka, Gannon McGrath, Kohei Kinoshita, Zahra Habibabady, Madelyn Ma, Victoria Diaz, Akihiro Maenaka, Anthony Calhoun, Megan Dufault, Ivy Rosales, Christiana M Laguerre, Seyed-Amir Sanatkar, Lars Burdorf, David L Ayares, William Eyestone, Prachi Sardana, Kasinath Kuravi, Lori Sorrells, Seth Lederman, Caroline G Lucas, Randall S Prather, Kevin D Wells, Kristin M Whitworth, David K C Cooper, Richard N Pierson","doi":"10.1016/j.healun.2024.07.022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Xenotransplantation has made significant advances recently using pigs genetically engineered to remove carbohydrate antigens, either alone or with addition of various human complement, coagulation, and anti-inflammatory ''transgenes''. Here we evaluated results associated with gene-edited (GE) pig hearts transplanted in baboons using an established costimulation-based immunosuppressive regimen and a cold-perfused graft preservation technique.</p><p><strong>Methods: </strong>Eight baboons received heterotopic abdominal heart transplants from 3-GE (GalKO.β4GalNT2KO.hCD55, n = 3), 9-GE (GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55. TBM.EPCR.hCD47. HO-1, n = 3) or 10-G (9-GE+CMAHKO, n = 2) pigs using Steen's cold continuous perfusion for ischemia minimization. Immunosuppression (IS) included induction with anti-thymocyte globulin and αCD20, ongoing αCD154, MMF, and tapered corticosteroid.</p><p><strong>Results: </strong>All three 3-GE grafts functioned well initially, but failed within 5 days. One 9-GE graft was lost intraoperatively due to a technical issue and another was lost at POD 13 due to antibody mediated rejection (AMR) in a baboon with a strongly positive pre-operative cross-match. One 10-GE heart failed at POD113 with combined cellular and antibody mediated rejection. One 9-GE and one 10-GE hearts had preserved graft function with normal myocardium on protocol biopsies, but exhibited slowly progressive graft hypertrophy until elective necropsy at POD393 and 243 respectively. Elevated levels of IL-6, MCP-1, C-reactive protein, and human thrombomodulin were variably associated with conditioning, the transplant procedure, and clinically significant postoperative events.</p><p><strong>Conclusion: </strong>Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based IS, justifying further evaluation in an orthotopic model.</p>","PeriodicalId":15900,"journal":{"name":"Journal of Heart and Lung Transplantation","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heart and Lung Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.healun.2024.07.022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Xenotransplantation has made significant advances recently using pigs genetically engineered to remove carbohydrate antigens, either alone or with addition of various human complement, coagulation, and anti-inflammatory ''transgenes''. Here we evaluated results associated with gene-edited (GE) pig hearts transplanted in baboons using an established costimulation-based immunosuppressive regimen and a cold-perfused graft preservation technique.
Methods: Eight baboons received heterotopic abdominal heart transplants from 3-GE (GalKO.β4GalNT2KO.hCD55, n = 3), 9-GE (GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55. TBM.EPCR.hCD47. HO-1, n = 3) or 10-G (9-GE+CMAHKO, n = 2) pigs using Steen's cold continuous perfusion for ischemia minimization. Immunosuppression (IS) included induction with anti-thymocyte globulin and αCD20, ongoing αCD154, MMF, and tapered corticosteroid.
Results: All three 3-GE grafts functioned well initially, but failed within 5 days. One 9-GE graft was lost intraoperatively due to a technical issue and another was lost at POD 13 due to antibody mediated rejection (AMR) in a baboon with a strongly positive pre-operative cross-match. One 10-GE heart failed at POD113 with combined cellular and antibody mediated rejection. One 9-GE and one 10-GE hearts had preserved graft function with normal myocardium on protocol biopsies, but exhibited slowly progressive graft hypertrophy until elective necropsy at POD393 and 243 respectively. Elevated levels of IL-6, MCP-1, C-reactive protein, and human thrombomodulin were variably associated with conditioning, the transplant procedure, and clinically significant postoperative events.
Conclusion: Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based IS, justifying further evaluation in an orthotopic model.
期刊介绍:
The Journal of Heart and Lung Transplantation, the official publication of the International Society for Heart and Lung Transplantation, brings readers essential scholarly and timely information in the field of cardio-pulmonary transplantation, mechanical and biological support of the failing heart, advanced lung disease (including pulmonary vascular disease) and cell replacement therapy. Importantly, the journal also serves as a medium of communication of pre-clinical sciences in all these rapidly expanding areas.