{"title":"Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine -Based Approach to Overall Survival Estimation.","authors":"Jiunn-Kai Chong, Priyanka Jain, Shivani Prasad, Navneet Kumar Dubey, Sanjay Saxena, Wen-Cheng Lo","doi":"10.3340/jkns.2024.0100","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Glioblastoma multiforme (GBM), particularly the IDH-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.</p><p><strong>Methods: </strong>This study utilizes a Support Vector Machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (< 12 Months) and long (>=12 Months) survivors. A dataset comprising multi-parametric MRI (mpMRI) scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, FLAIR, and T1-Gd sequences. Low variance features were removed, and Recursive Feature Elimination (RFE) was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT promoter methylation status were integrated to enhance prediction accuracy.</p><p><strong>Results: </strong>The model showed reasonable results in terms of cross-validated AUC of 0.84 (95% CI: 0.80-0.90) with (p-value < 0.001) effectively categorizing patients into short and long survivors. Log-rank test (Chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen's d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value<0.0001.</p><p><strong>Conclusion: </strong>The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.</p>","PeriodicalId":16283,"journal":{"name":"Journal of Korean Neurosurgical Society","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Neurosurgical Society","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3340/jkns.2024.0100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Glioblastoma multiforme (GBM), particularly the IDH-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.
Methods: This study utilizes a Support Vector Machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (< 12 Months) and long (>=12 Months) survivors. A dataset comprising multi-parametric MRI (mpMRI) scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, FLAIR, and T1-Gd sequences. Low variance features were removed, and Recursive Feature Elimination (RFE) was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT promoter methylation status were integrated to enhance prediction accuracy.
Results: The model showed reasonable results in terms of cross-validated AUC of 0.84 (95% CI: 0.80-0.90) with (p-value < 0.001) effectively categorizing patients into short and long survivors. Log-rank test (Chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen's d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value<0.0001.
Conclusion: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.
期刊介绍:
The Journal of Korean Neurosurgical Society (J Korean Neurosurg Soc) is the official journal of the Korean Neurosurgical Society, and published bimonthly (1st day of January, March, May, July, September, and November). It launched in October 31, 1972 with Volume 1 and Number 1. J Korean Neurosurg Soc aims to allow neurosurgeons from around the world to enrich their knowledge of patient management, education, and clinical or experimental research, and hence their professionalism. This journal publishes Laboratory Investigations, Clinical Articles, Review Articles, Case Reports, Technical Notes, and Letters to the Editor. Our field of interest involves clinical neurosurgery (cerebrovascular disease, neuro-oncology, skull base neurosurgery, spine, pediatric neurosurgery, functional neurosurgery, epilepsy, neuro-trauma, and peripheral nerve disease) and laboratory work in neuroscience.