Fabrication and optimization of naringin-loaded MOF-5 encapsulated by liponiosomes as smart drug delivery, cytotoxicity, and apoptotic on breast cancer cells.
Lina M Alneghery, Mohammed Al-Zharani, Fahd A Nasr, Zienab E Eldin, Tayel A Al Hujran, Hesham M Tawfeek, Mohamed H Fayed, Shehab Elbeltagi
{"title":"Fabrication and optimization of naringin-loaded MOF-5 encapsulated by liponiosomes as smart drug delivery, cytotoxicity, and apoptotic on breast cancer cells.","authors":"Lina M Alneghery, Mohammed Al-Zharani, Fahd A Nasr, Zienab E Eldin, Tayel A Al Hujran, Hesham M Tawfeek, Mohamed H Fayed, Shehab Elbeltagi","doi":"10.1080/03639045.2024.2388786","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancers are regarded as hazardous due to their high worldwide death rate, with breast cancer (BC), which affects practically all cancer patients globally, playing a significant role in this statistic. The therapeutic approach for BC has not advanced using standard techniques, such as specialized naringin (NG) chemotherapy. Instead, a novel strategy has been utilized to enhance smart drug delivery (SDD) to tumors.</p><p><strong>Significance: </strong>Herein, we established NG-loaded zinc metal-organic framework-5 (NG-MOF-5) coated with liponiosomes (LNs) to manufacture NG-MOF-5@LNs nanoparticles (NPs) for antibacterial and cancer treatment.</p><p><strong>Methods: </strong>MOF-5, NG, and NG-MOF-5@LNs were evaluated with XRD, thermogravimetric analysis (TGA), FTIR, SEM, TEM, PDI, ZP, encapsulation efficiency (EE), loading efficiency (LE), and drug release (DR) kinetics. We examined the antibacterial activity involving minimum inhibitory concentration (MIC) and zone of inhibition by NG, MOF-5, and NG-MOF-5@LNs. The cell viability, necrosis, and total apoptosis (late and early) were evaluated for anti-cancer activity against MCF-7 BC cells.</p><p><strong>Results: </strong>TEM results demonstrated that NG-MOF-5@LNs formed monodispersed spherical-like particles with a size of 122.5 nm, PDI of 0.139, and ZP of +21 mV. The anti-microbial activity results indicated that NG-MOF-5@LNs exhibited potent antibacterial effects, as evidenced by inhibition zones and MIC values. The Higuchi model indicates an excellent fit (<i>R</i><sup>2</sup> = 0.9988). The MTT assay revealed anti-tumor activity against MCF-7 BC cells, with IC<sub>50</sub> of 21 µg/mL for NG-MOF-5@LNs and demonstrating a total apoptosis effect of 68.2% on MCF-7 cells.</p><p><strong>Conclusion: </strong>NG-MOF-5@LNs is anticipated to show as an effective antimicrobial and novel long-term-release antitumor agent and might be more suitable for MCF-7 cell therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2388786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cancers are regarded as hazardous due to their high worldwide death rate, with breast cancer (BC), which affects practically all cancer patients globally, playing a significant role in this statistic. The therapeutic approach for BC has not advanced using standard techniques, such as specialized naringin (NG) chemotherapy. Instead, a novel strategy has been utilized to enhance smart drug delivery (SDD) to tumors.
Significance: Herein, we established NG-loaded zinc metal-organic framework-5 (NG-MOF-5) coated with liponiosomes (LNs) to manufacture NG-MOF-5@LNs nanoparticles (NPs) for antibacterial and cancer treatment.
Methods: MOF-5, NG, and NG-MOF-5@LNs were evaluated with XRD, thermogravimetric analysis (TGA), FTIR, SEM, TEM, PDI, ZP, encapsulation efficiency (EE), loading efficiency (LE), and drug release (DR) kinetics. We examined the antibacterial activity involving minimum inhibitory concentration (MIC) and zone of inhibition by NG, MOF-5, and NG-MOF-5@LNs. The cell viability, necrosis, and total apoptosis (late and early) were evaluated for anti-cancer activity against MCF-7 BC cells.
Results: TEM results demonstrated that NG-MOF-5@LNs formed monodispersed spherical-like particles with a size of 122.5 nm, PDI of 0.139, and ZP of +21 mV. The anti-microbial activity results indicated that NG-MOF-5@LNs exhibited potent antibacterial effects, as evidenced by inhibition zones and MIC values. The Higuchi model indicates an excellent fit (R2 = 0.9988). The MTT assay revealed anti-tumor activity against MCF-7 BC cells, with IC50 of 21 µg/mL for NG-MOF-5@LNs and demonstrating a total apoptosis effect of 68.2% on MCF-7 cells.
Conclusion: NG-MOF-5@LNs is anticipated to show as an effective antimicrobial and novel long-term-release antitumor agent and might be more suitable for MCF-7 cell therapy.