{"title":"Linggui Zhugan decoction as a potential medicine for neuroprotection in Alzheimer's Disease via AMPK pathway.","authors":"Yun Fan, Yun Ling, Jiulve Hu, Zijun Hou, Runpeng Dou, Chunxiang Zhou","doi":"10.14715/cmb/2024.70.7.23","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a degenerative dementia illness that causes atrophy of the temporal and frontal lobes of the cerebral cortex. Linggui Zhugan (LGZG), a classic Chinese herbal formula, was initially recognized as a safe and effective treatment of cardiovascular diseases for long history. This study intended to assess the effects and the molecular mechanism of LGZG on AD progress. C57BL/6 mice were divided into six groups: normal mice, amyloid precursor protein/presenilin 1 (APP/PS1) mice (model group), positive control group (model mice treated with donepezil), high, medium and low LGZG group (model mice treated with 7g/kg/d, 3.5g/kg/d or 1.75g/kg/d LGZG respectively). Water maze results showed that the escape latency and path length of high and medium LGZG groups declined compared to the model mice, the decline degree was dose-dependent. The hippocampal slices of six groups were analyzed by Nissl-staining, Perls' iron staining and immunofluorescence assay. The results indicated LGZG could restore morphological anomalies and alleviate iron deposition of AD mice, and the GXP4 positive cells increased significantly. The MDA, Fe2+ and GSH were measured by biochemical testing, whose results illustrated that LGZG could normalize MDA, Fe2+ and GSH levels in AD model compared to un-treated APP/PS1 model. The higher dose of LGZG the mice received, the more intensive effects on those levels of molecules. Western blot results showed that LGZG could affect NeuN, AMPK, p53, SLC7A11 and GPX4 levels in the hippocampus of AD model, which was all proteins related to AMPK pathway. In conclusion, LGZG has a neuroprotective effect on AD through AMPK pathway by alleviating oxidative stress and ferroptosis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.7.23","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a degenerative dementia illness that causes atrophy of the temporal and frontal lobes of the cerebral cortex. Linggui Zhugan (LGZG), a classic Chinese herbal formula, was initially recognized as a safe and effective treatment of cardiovascular diseases for long history. This study intended to assess the effects and the molecular mechanism of LGZG on AD progress. C57BL/6 mice were divided into six groups: normal mice, amyloid precursor protein/presenilin 1 (APP/PS1) mice (model group), positive control group (model mice treated with donepezil), high, medium and low LGZG group (model mice treated with 7g/kg/d, 3.5g/kg/d or 1.75g/kg/d LGZG respectively). Water maze results showed that the escape latency and path length of high and medium LGZG groups declined compared to the model mice, the decline degree was dose-dependent. The hippocampal slices of six groups were analyzed by Nissl-staining, Perls' iron staining and immunofluorescence assay. The results indicated LGZG could restore morphological anomalies and alleviate iron deposition of AD mice, and the GXP4 positive cells increased significantly. The MDA, Fe2+ and GSH were measured by biochemical testing, whose results illustrated that LGZG could normalize MDA, Fe2+ and GSH levels in AD model compared to un-treated APP/PS1 model. The higher dose of LGZG the mice received, the more intensive effects on those levels of molecules. Western blot results showed that LGZG could affect NeuN, AMPK, p53, SLC7A11 and GPX4 levels in the hippocampus of AD model, which was all proteins related to AMPK pathway. In conclusion, LGZG has a neuroprotective effect on AD through AMPK pathway by alleviating oxidative stress and ferroptosis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.