Variational Supertrees for Bayesian Phylogenetics.

IF 2 4区 数学 Q2 BIOLOGY
Michael D Karcher, Cheng Zhang, Frederic A Matsen
{"title":"Variational Supertrees for Bayesian Phylogenetics.","authors":"Michael D Karcher, Cheng Zhang, Frederic A Matsen","doi":"10.1007/s11538-024-01338-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 9","pages":"114"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01338-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.

Abstract Image

贝叶斯系统进化论的变异超树
贝叶斯系统发育推断功能强大,但计算密集。研究人员可能会发现自己在重叠的数据集上有两个系统发育后验,他们可能希望近似得到一个合并结果,而不必在合并数据集上重新运行可能很昂贵的马尔可夫链。这就提出了一个问题:给定一组类群(如物种或病毒样本)的重叠子集,并给定每个类群集的系统发生树拓扑后验分布,我们如何才能优化整个类群集的系统发生树拓扑概率分布?在本文中,我们针对这一问题开发了一种变分方法,并展示了其有效性。具体来说,我们开发了一种算法来为整个类群集的变异树拓扑分布寻找合适的支持,并开发了一种梯度-后裔算法来最小化变异分布对每个给定子集概率分布的限制的发散,从而逼近整个类群集的后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信