Improving prediction of linear regression models by integrating external information from heterogeneous populations: James-Stein estimators.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peisong Han, Haoyue Li, Sung Kyun Park, Bhramar Mukherjee, Jeremy M G Taylor
{"title":"Improving prediction of linear regression models by integrating external information from heterogeneous populations: James-Stein estimators.","authors":"Peisong Han, Haoyue Li, Sung Kyun Park, Bhramar Mukherjee, Jeremy M G Taylor","doi":"10.1093/biomtc/ujae072","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the setting where (1) an internal study builds a linear regression model for prediction based on individual-level data, (2) some external studies have fitted similar linear regression models that use only subsets of the covariates and provide coefficient estimates for the reduced models without individual-level data, and (3) there is heterogeneity across these study populations. The goal is to integrate the external model summary information into fitting the internal model to improve prediction accuracy. We adapt the James-Stein shrinkage method to propose estimators that are no worse and are oftentimes better in the prediction mean squared error after information integration, regardless of the degree of study population heterogeneity. We conduct comprehensive simulation studies to investigate the numerical performance of the proposed estimators. We also apply the method to enhance a prediction model for patella bone lead level in terms of blood lead level and other covariates by integrating summary information from published literature.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae072","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the setting where (1) an internal study builds a linear regression model for prediction based on individual-level data, (2) some external studies have fitted similar linear regression models that use only subsets of the covariates and provide coefficient estimates for the reduced models without individual-level data, and (3) there is heterogeneity across these study populations. The goal is to integrate the external model summary information into fitting the internal model to improve prediction accuracy. We adapt the James-Stein shrinkage method to propose estimators that are no worse and are oftentimes better in the prediction mean squared error after information integration, regardless of the degree of study population heterogeneity. We conduct comprehensive simulation studies to investigate the numerical performance of the proposed estimators. We also apply the method to enhance a prediction model for patella bone lead level in terms of blood lead level and other covariates by integrating summary information from published literature.

通过整合来自异质种群的外部信息改进线性回归模型的预测:詹姆斯-斯坦估计器
我们考虑的情况是:(1) 一项内部研究根据个体水平数据建立了一个线性回归预测模型;(2) 一些外部研究拟合了类似的线性回归模型,这些模型只使用了协变量子集,并在没有个体水平数据的情况下提供了缩小模型的系数估计值;(3) 这些研究人群之间存在异质性。我们的目标是将外部模型的摘要信息整合到内部模型的拟合中,以提高预测的准确性。我们采用詹姆斯-斯泰因收缩方法,提出了在信息整合后预测均方误差不会变差的估计器,而且在很多情况下,无论研究人群的异质性程度如何,估计器的预测均方误差都会更好。我们进行了全面的模拟研究,以考察所提出的估计器的数值性能。我们还应用该方法,通过整合已发表文献的摘要信息,从血铅水平和其他协变量的角度增强了髌骨骨铅水平的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信