Arsenic-induced transition of thymic inflammation-to-fibrosis involves Stat3-Twist1 interaction: Melatonin to the rescue.

IF 5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioFactors Pub Date : 2024-08-03 DOI:10.1002/biof.2110
Ankur Das, Ankan Mitra, Sourav Ghosh, Swaimanti Sarkar, Palash Kumar Pal, Debasish Bandyopadhyay, Sreya Chattopadhyay
{"title":"Arsenic-induced transition of thymic inflammation-to-fibrosis involves Stat3-Twist1 interaction: Melatonin to the rescue.","authors":"Ankur Das, Ankan Mitra, Sourav Ghosh, Swaimanti Sarkar, Palash Kumar Pal, Debasish Bandyopadhyay, Sreya Chattopadhyay","doi":"10.1002/biof.2110","DOIUrl":null,"url":null,"abstract":"<p><p>Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.

Abstract Image

砷诱导的胸腺炎症向纤维化转变涉及Stat3-Twist1相互作用:褪黑激素的拯救
地下水中的砷是一种臭名昭著的有毒物质,暴露于环境相关浓度的砷一直是全世界的医疗负担。据报道,砷会损害免疫系统的正常功能,但人们对胸腺 T 细胞生物学的认识仍然存在差距。砷对胸腺完整性的免疫毒性影响需要一种有效的修复分子。本研究的目的是研究与砷诱导的胸腺免疫改变相关的关键信号交叉,并提出褪黑素作为一种潜在的候选物质,可预防砷暴露引起的免疫并发症。瑞士白化小鼠暴露于亚砷酸钠(0.05 毫克/升,在饮用水中)和褪黑素(IP:10 毫克/千克体重)28 天。褪黑素成功地保护了胸腺免受砷介导的组织变性,并通过上调Nrf2减轻氧化应激维持了免疫平衡,包括T细胞的成熟和增殖。此外,褪黑素还分别通过抑制 p53 介导的线粒体细胞死亡通路和 NF-κB-p65/STAT3 介导的促炎通路,对砷诱导的细胞凋亡和炎症具有改善作用。我们首次发现,褪黑激素通过靶向炎症相关的EMT抑制了砷诱导的组织坏死变化。我们的研究结果清楚地表明,褪黑激素是对抗砷诱导的免疫毒性的可行且有前景的候选药物,而且不会造成附带损害,因此是一个重要的研究靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioFactors
BioFactors 生物-内分泌学与代谢
CiteScore
11.50
自引率
3.30%
发文量
96
审稿时长
6-12 weeks
期刊介绍: BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease. The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements. In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信