{"title":"Modulating endothelial cell dynamics in fat grafting: the impact of DLL4 siRNA via adipose stem cell extracellular vesicles.","authors":"Sen-Lin Deng, Qiang Fu, Qing Liu, Fu-Jun Huang, Miao Zhang, Xun Zhou","doi":"10.1152/ajpcell.00186.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of improving the efficacy of autologous fat grafts (AFGs) in reconstructive surgery, this study delineates the novel use of adipose-derived mesenchymal stem cells (ADSCs) and their extracellular vesicles (EVs) as vehicles for delivering delta-like ligand 4 (DLL4) siRNA. The aim was to inhibit DLL4, a gene identified through transcriptome analysis as a critical player in the vascular endothelial cells of AFG tissues, thereby negatively affecting endothelial cell functions and graft survival through the Notch signaling pathway. By engineering ADSC EVs to carry DLL4 siRNA (ADSC EVs-siDLL4), the research demonstrated a marked improvement in endothelial cell proliferation, migration, and lumen formation, and enhanced angiogenesis in vivo, leading to a significant increase in the survival rate of AFGs. This approach presents a significant advancement in the field of tissue engineering and regenerative medicine, offering a potential method to overcome the limitations of current fat grafting techniques.<b>NEW & NOTEWORTHY</b> This study introduces a groundbreaking method for enhancing autologous fat graft survival using adipose-derived stem cell extracellular vesicles (ADSC EVs) to deliver DLL4 siRNA. By targeting the delta-like ligand 4 (DLL4) gene, crucial in endothelial cell dynamics, this innovative approach significantly improves endothelial cell functions and angiogenesis, marking a substantial advancement in tissue engineering and regenerative medicine.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C929-C945"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00186.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of improving the efficacy of autologous fat grafts (AFGs) in reconstructive surgery, this study delineates the novel use of adipose-derived mesenchymal stem cells (ADSCs) and their extracellular vesicles (EVs) as vehicles for delivering delta-like ligand 4 (DLL4) siRNA. The aim was to inhibit DLL4, a gene identified through transcriptome analysis as a critical player in the vascular endothelial cells of AFG tissues, thereby negatively affecting endothelial cell functions and graft survival through the Notch signaling pathway. By engineering ADSC EVs to carry DLL4 siRNA (ADSC EVs-siDLL4), the research demonstrated a marked improvement in endothelial cell proliferation, migration, and lumen formation, and enhanced angiogenesis in vivo, leading to a significant increase in the survival rate of AFGs. This approach presents a significant advancement in the field of tissue engineering and regenerative medicine, offering a potential method to overcome the limitations of current fat grafting techniques.NEW & NOTEWORTHY This study introduces a groundbreaking method for enhancing autologous fat graft survival using adipose-derived stem cell extracellular vesicles (ADSC EVs) to deliver DLL4 siRNA. By targeting the delta-like ligand 4 (DLL4) gene, crucial in endothelial cell dynamics, this innovative approach significantly improves endothelial cell functions and angiogenesis, marking a substantial advancement in tissue engineering and regenerative medicine.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.