Adam C. Clansey, Daniel Bondi, Rebecca Kenny, David Luke, Zaryan Masood, Yuan Gao, Marko Elez, Songbai Ji, Alexander Rauscher, Paul van Donkelaar, Lyndia C. Wu
{"title":"On-field Head Acceleration Exposure Measurements Using Instrumented Mouthguards: Multi-stage Screening to Optimize Data Quality","authors":"Adam C. Clansey, Daniel Bondi, Rebecca Kenny, David Luke, Zaryan Masood, Yuan Gao, Marko Elez, Songbai Ji, Alexander Rauscher, Paul van Donkelaar, Lyndia C. Wu","doi":"10.1007/s10439-024-03592-z","DOIUrl":null,"url":null,"abstract":"<div><p>Instrumented mouthguards (iMGs) are widely applied to measure head acceleration event (HAE) exposure in sports. Despite laboratory validation, on-field factors including potential sensor skull-decoupling and spurious recordings limit data accuracy. Video analysis can provide complementary information to verify sensor data but lacks quantitative kinematics reference information and suffers from subjectivity. The purpose of this study was to develop a rigorous multi-stage screening procedure, combining iMG and video as independent measurements, aimed at improving the quality of on-field HAE exposure measurements. We deployed iMGs and gathered video recordings in a complete university men’s ice hockey varsity season. We developed a four-stage process that involves independent video and sensor data collection (Stage I), general screening (Stage II), cross verification (Stage III), and coupling verification (Stage IV). Stage I yielded 24,596 iMG acceleration events (AEs) and 17,098 potential video HAEs from all games. Approximately 2.5% of iMG AEs were categorized as cross-verified and coupled iMG HAEs after Stage IV, and less than 1/5 of confirmed or probable video HAEs were cross-verified with iMG data during stage III. From Stage I to IV, we observed lower peak kinematics (median peak linear acceleration from 36.0 to 10.9 g; median peak angular acceleration from 3922 to 942 rad/s<sup>2</sup>) and reduced high-frequency signals, indicative of potential reduction in kinematic noise. Our study proposes a rigorous process for on-field data screening and provides quantitative evidence of data quality improvements using this process. Ensuring data quality is critical in further investigation of potential brain injury risk using HAE exposure data.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 10","pages":"2666 - 2677"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03592-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Instrumented mouthguards (iMGs) are widely applied to measure head acceleration event (HAE) exposure in sports. Despite laboratory validation, on-field factors including potential sensor skull-decoupling and spurious recordings limit data accuracy. Video analysis can provide complementary information to verify sensor data but lacks quantitative kinematics reference information and suffers from subjectivity. The purpose of this study was to develop a rigorous multi-stage screening procedure, combining iMG and video as independent measurements, aimed at improving the quality of on-field HAE exposure measurements. We deployed iMGs and gathered video recordings in a complete university men’s ice hockey varsity season. We developed a four-stage process that involves independent video and sensor data collection (Stage I), general screening (Stage II), cross verification (Stage III), and coupling verification (Stage IV). Stage I yielded 24,596 iMG acceleration events (AEs) and 17,098 potential video HAEs from all games. Approximately 2.5% of iMG AEs were categorized as cross-verified and coupled iMG HAEs after Stage IV, and less than 1/5 of confirmed or probable video HAEs were cross-verified with iMG data during stage III. From Stage I to IV, we observed lower peak kinematics (median peak linear acceleration from 36.0 to 10.9 g; median peak angular acceleration from 3922 to 942 rad/s2) and reduced high-frequency signals, indicative of potential reduction in kinematic noise. Our study proposes a rigorous process for on-field data screening and provides quantitative evidence of data quality improvements using this process. Ensuring data quality is critical in further investigation of potential brain injury risk using HAE exposure data.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.