Trevor A. Paratore, Greta E. Schmidt, Alonzo H. Ross, Arne Gericke
{"title":"Thermal stability of bivalent cation/phosphoinositide domains in model membranes","authors":"Trevor A. Paratore, Greta E. Schmidt, Alonzo H. Ross, Arne Gericke","doi":"10.1016/j.chemphyslip.2024.105424","DOIUrl":null,"url":null,"abstract":"<div><p>As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P<sub>2</sub> and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P<sub>3</sub>) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg<sup>2+</sup> ions. While PI(4)P shows in the presence of Ca<sup>2+</sup> no clustering, PI(4,5)P<sub>2</sub> forms with Ca<sup>2+</sup> strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P<sub>3</sub> with Ca<sup>2+</sup> is less than what was observed for PI(4,5)P<sub>2</sub>, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg<sup>2+</sup> or Ca<sup>2+</sup> with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca<sup>2+</sup> with PI(4,5)P<sub>2</sub>. Also, in the presence of cholesterol, the interaction of Mg<sup>2+</sup> with PI(4,5)P<sub>2</sub> remains weak. PI(3,4,5)P<sub>3</sub> does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca<sup>2+</sup> and Mg<sup>2+</sup> was not influenced by the presence of cholesterol.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"264 ","pages":"Article 105424"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308424000495","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2 and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg2+ ions. While PI(4)P shows in the presence of Ca2+ no clustering, PI(4,5)P2 forms with Ca2+ strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P3 with Ca2+ is less than what was observed for PI(4,5)P2, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg2+ or Ca2+ with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca2+ with PI(4,5)P2. Also, in the presence of cholesterol, the interaction of Mg2+ with PI(4,5)P2 remains weak. PI(3,4,5)P3 does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca2+ and Mg2+ was not influenced by the presence of cholesterol.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.