Laura Fernández-García, Joy Kirigo, Daniel Huelgas-Méndez, Michael J. Benedik, María Tomás, Rodolfo García-Contreras, Thomas K. Wood
{"title":"Phages produce persisters","authors":"Laura Fernández-García, Joy Kirigo, Daniel Huelgas-Méndez, Michael J. Benedik, María Tomás, Rodolfo García-Contreras, Thomas K. Wood","doi":"10.1111/1751-7915.14543","DOIUrl":null,"url":null,"abstract":"<p>Arguably, the greatest threat to bacteria is phages. It is often assumed that those bacteria that escape phage infection have mutated or utilized phage-defence systems; however, another possibility is that a subpopulation forms the dormant persister state in a manner similar to that demonstrated for bacterial cells undergoing nutritive, oxidative, and antibiotic stress. Persister cells do not undergo mutation and survive lethal conditions by ceasing growth transiently. Slower growth and dormancy play a key physiological role as they allow host phage defence systems more time to clear the phage infection. Here, we investigated how bacteria survive lytic phage infection by isolating surviving cells from the plaques of T2, T4, and lambda (cI mutant) virulent phages and sequencing their genomes. We found that bacteria in plaques can escape phage attack both by mutation (i.e. become resistant) and without mutation (i.e. become persistent). Specifically, whereas T4-resistant and lambda-resistant bacteria with over a 100,000-fold less sensitivity were isolated from plaques with obvious genetic mutations (e.g. causing mucoidy), cells were also found after T2 infection that undergo no significant mutation, retain wild-type phage sensitivity, and survive lethal doses of antibiotics. Corroborating this, adding T2 phage to persister cells resulted in 137,000-fold more survival compared to that of addition to exponentially growing cells. Furthermore, our results seem general in that phage treatments with <i>Klebsiella pneumonia</i> and <i>Pseudomonas aeruginosa</i> also generated persister cells<i>.</i> Hence, along with resistant strains, bacteria also form persister cells during phage infection.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14543","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Arguably, the greatest threat to bacteria is phages. It is often assumed that those bacteria that escape phage infection have mutated or utilized phage-defence systems; however, another possibility is that a subpopulation forms the dormant persister state in a manner similar to that demonstrated for bacterial cells undergoing nutritive, oxidative, and antibiotic stress. Persister cells do not undergo mutation and survive lethal conditions by ceasing growth transiently. Slower growth and dormancy play a key physiological role as they allow host phage defence systems more time to clear the phage infection. Here, we investigated how bacteria survive lytic phage infection by isolating surviving cells from the plaques of T2, T4, and lambda (cI mutant) virulent phages and sequencing their genomes. We found that bacteria in plaques can escape phage attack both by mutation (i.e. become resistant) and without mutation (i.e. become persistent). Specifically, whereas T4-resistant and lambda-resistant bacteria with over a 100,000-fold less sensitivity were isolated from plaques with obvious genetic mutations (e.g. causing mucoidy), cells were also found after T2 infection that undergo no significant mutation, retain wild-type phage sensitivity, and survive lethal doses of antibiotics. Corroborating this, adding T2 phage to persister cells resulted in 137,000-fold more survival compared to that of addition to exponentially growing cells. Furthermore, our results seem general in that phage treatments with Klebsiella pneumonia and Pseudomonas aeruginosa also generated persister cells. Hence, along with resistant strains, bacteria also form persister cells during phage infection.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes