Dietary fibre optimisation in support of global health

IF 5.7 2区 生物学
Anouschka S. Ramsteijn, Petra Louis
{"title":"Dietary fibre optimisation in support of global health","authors":"Anouschka S. Ramsteijn,&nbsp;Petra Louis","doi":"10.1111/1751-7915.14542","DOIUrl":null,"url":null,"abstract":"<p>The human gut microbiota influences its host via multiple molecular pathways, including immune system interactions, the provision of nutrients and regulation of host physiology. Dietary fibre plays a crucial role in maintaining a healthy microbiota as its primary nutrient and energy source. Industrialisation has led to a massive decrease of habitual fibre intake in recent times, and fibre intakes across the world are below the national recommendations. This goes hand in hand with other factors in industrialised societies that may negatively affect the gut microbiota, such as medication and increased hygiene. Non-communicable diseases are on the rise in urbanised societies and the optimisation of dietary fibre intake can help to improve global health and prevent disease. Early life interventions shape the developing microbiota to counteract malnutrition, both in the context of industrialised nations with an overabundance of cheap, highly processed foods, as well as in Low- and Middle-Income Countries (LMICs). Adequate fibre intake should, however, be maintained across the life course to promote health. Here we will discuss the current state of dietary fibre research in the global context and consider different intervention approaches.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 8","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human gut microbiota influences its host via multiple molecular pathways, including immune system interactions, the provision of nutrients and regulation of host physiology. Dietary fibre plays a crucial role in maintaining a healthy microbiota as its primary nutrient and energy source. Industrialisation has led to a massive decrease of habitual fibre intake in recent times, and fibre intakes across the world are below the national recommendations. This goes hand in hand with other factors in industrialised societies that may negatively affect the gut microbiota, such as medication and increased hygiene. Non-communicable diseases are on the rise in urbanised societies and the optimisation of dietary fibre intake can help to improve global health and prevent disease. Early life interventions shape the developing microbiota to counteract malnutrition, both in the context of industrialised nations with an overabundance of cheap, highly processed foods, as well as in Low- and Middle-Income Countries (LMICs). Adequate fibre intake should, however, be maintained across the life course to promote health. Here we will discuss the current state of dietary fibre research in the global context and consider different intervention approaches.

Abstract Image

优化膳食纤维,促进全球健康。
人体肠道微生物群通过多种分子途径影响宿主,包括免疫系统相互作用、提供营养物质和调节宿主生理机能。膳食纤维作为微生物群的主要营养和能量来源,在维持微生物群健康方面发挥着至关重要的作用。近代以来,工业化导致习惯性纤维摄入量大幅下降,全世界的纤维摄入量都低于国家推荐值。与此同时,工业化社会中的其他因素也可能对肠道微生物群产生负面影响,如药物和卫生条件的改善。非传染性疾病在城市化社会中呈上升趋势,优化膳食纤维摄入量有助于改善全球健康状况和预防疾病。无论是在廉价、高度加工食品过剩的工业化国家,还是在中低收入国家(LMIC),生命早期的干预措施都能塑造发育中的微生物群,从而抵御营养不良。然而,在整个生命过程中都应保持足够的纤维摄入量,以促进健康。在此,我们将讨论全球范围内膳食纤维研究的现状,并考虑不同的干预方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信