Hitomi Yagi, Myriam Boeck, Shen Nian, Katherine Neilsen, Chaomei Wang, Jeff Lee, Yan Zeng, Matthew Grumbine, Ian R. Sweet, Taku Kasai, Kazuno Negishi, Sasha A. Singh, Masanori Aikawa, Ann Hellström, Lois E. H. Smith, Zhongjie Fu
{"title":"Mitochondrial control of hypoxia-induced pathological retinal angiogenesis","authors":"Hitomi Yagi, Myriam Boeck, Shen Nian, Katherine Neilsen, Chaomei Wang, Jeff Lee, Yan Zeng, Matthew Grumbine, Ian R. Sweet, Taku Kasai, Kazuno Negishi, Sasha A. Singh, Masanori Aikawa, Ann Hellström, Lois E. H. Smith, Zhongjie Fu","doi":"10.1007/s10456-024-09940-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.</p><h3>Methods</h3><p>OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation.</p><h3>Results</h3><p>In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV.</p><h3>Conclusions</h3><p>Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"27 4","pages":"691 - 699"},"PeriodicalIF":9.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-024-09940-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09940-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.
Methods
OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation.
Results
In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV.
Conclusions
Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.
期刊介绍:
Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.