Computational Prediction of Structural, Optoelectronic, Thermodynamic, and Thermoelectric Response of the Cubic Perovskite RbTmCl3 via DFT‐mBJ + SOC Studies
Ejaz Ahmad Khera, Abrar Nazir, Zubair Ahmed, Mumtaz Manzoor, Hamid Ullah, Sabah Ansar, Yedluri Anil Kumar, Ramesh Sharma
{"title":"Computational Prediction of Structural, Optoelectronic, Thermodynamic, and Thermoelectric Response of the Cubic Perovskite RbTmCl3 via DFT‐mBJ + SOC Studies","authors":"Ejaz Ahmad Khera, Abrar Nazir, Zubair Ahmed, Mumtaz Manzoor, Hamid Ullah, Sabah Ansar, Yedluri Anil Kumar, Ramesh Sharma","doi":"10.1002/pssb.202400123","DOIUrl":null,"url":null,"abstract":"Perovskite halides, owing to their environmental stability, non‐toxicity, and remarkable efficiency, are emerging as potential candidates for photovoltaic, solar cell, and thermodynamic applications. The electronic, optical, thermoelectric, and thermodynamic properties of cubic perovskite RbTmCl<jats:sub>3</jats:sub> are studied using density functional theory (DFT). The electronic, optical, and thermoelectric properties are calculated both with and without spin‐orbit coupling (SOC) using the Tran and Blaha functional in the structure of the modified Becke Johnson (mBJ) exchange potential, while structural and mechanical properties are assessed using the exchange‐correlation functional calculated using the Perdew Burke Ernzerhof Generalized Gradient Approximation (PBE‐GGA). The negative formation energy (−592.39 KJ mol<jats:sup>−1</jats:sup>) and tolerance factor (1.17) for structural stability and current their existences in the cubic phase are found. Evaluation of the obtained data with and without SOC shows that the SOC effect causes the Tm‐d states to be shifted toward the level of Fermi, thereby decreasing the energy band gaps from 1.42 to 1.32 eV. Nevertheless, only the shift of the third variable peak to lower energies indicates the impact of SOC on optical properties. The effectiveness of RbTmCl<jats:sub>3</jats:sub> in optical devices operating in the visible and ultraviolet regions is demonstrated by the exceptional absorption of light in these ranges. Using TB‐mBJ + SOC functional, the electronic band structure research reveals a direct semiconducting band gap of 1.32 eV in comparison to earlier calculations like LDA, PBE‐GGA, and TB‐mBJ. The absorption spectrum, reflectivity, extinction coefficient, refractive index, and dielectric function are displayed in addition to the electrical properties. Additionally, the quasi‐harmonic Debye model, which accounts for lattice vibrations, was used to study the corresponding volume, heat capacity, expansion of the heat coefficient, and Debye temperature of the RbTmCl<jats:sub>3</jats:sub> crystal. We have calculated the thermoelectric parameters such as the Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor as a function of temperature (100–900 K).","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400123","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite halides, owing to their environmental stability, non‐toxicity, and remarkable efficiency, are emerging as potential candidates for photovoltaic, solar cell, and thermodynamic applications. The electronic, optical, thermoelectric, and thermodynamic properties of cubic perovskite RbTmCl3 are studied using density functional theory (DFT). The electronic, optical, and thermoelectric properties are calculated both with and without spin‐orbit coupling (SOC) using the Tran and Blaha functional in the structure of the modified Becke Johnson (mBJ) exchange potential, while structural and mechanical properties are assessed using the exchange‐correlation functional calculated using the Perdew Burke Ernzerhof Generalized Gradient Approximation (PBE‐GGA). The negative formation energy (−592.39 KJ mol−1) and tolerance factor (1.17) for structural stability and current their existences in the cubic phase are found. Evaluation of the obtained data with and without SOC shows that the SOC effect causes the Tm‐d states to be shifted toward the level of Fermi, thereby decreasing the energy band gaps from 1.42 to 1.32 eV. Nevertheless, only the shift of the third variable peak to lower energies indicates the impact of SOC on optical properties. The effectiveness of RbTmCl3 in optical devices operating in the visible and ultraviolet regions is demonstrated by the exceptional absorption of light in these ranges. Using TB‐mBJ + SOC functional, the electronic band structure research reveals a direct semiconducting band gap of 1.32 eV in comparison to earlier calculations like LDA, PBE‐GGA, and TB‐mBJ. The absorption spectrum, reflectivity, extinction coefficient, refractive index, and dielectric function are displayed in addition to the electrical properties. Additionally, the quasi‐harmonic Debye model, which accounts for lattice vibrations, was used to study the corresponding volume, heat capacity, expansion of the heat coefficient, and Debye temperature of the RbTmCl3 crystal. We have calculated the thermoelectric parameters such as the Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor as a function of temperature (100–900 K).
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.