Ultrathin (15 nm) Carbon Sheets with Surface Oxygen Functionalization for Efficient Pseudocapacitive Na-ion Storage

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Vinodkumar Etacheri, Rudi Ruben Maça, Venkata Sai Avvaru, Chulgi Nathan Hong, Abdullah Alazemi, Vilas G. Pol
{"title":"Ultrathin (15 nm) Carbon Sheets with Surface Oxygen Functionalization for Efficient Pseudocapacitive Na-ion Storage","authors":"Vinodkumar Etacheri,&nbsp;Rudi Ruben Maça,&nbsp;Venkata Sai Avvaru,&nbsp;Chulgi Nathan Hong,&nbsp;Abdullah Alazemi,&nbsp;Vilas G. Pol","doi":"10.1002/celc.202400255","DOIUrl":null,"url":null,"abstract":"<p>Disordered carbon is the state of the art anode material for Na-ion batteries due to their increased interlayer spacing and good electronic conductivity. However, its practical application is hindered by average specific capacity, poor rate performance, low coulombic efficiency and limited cycling stability. Herein, we report the superior pseudocapacitance enhanced Na-ion storage of <i>in situ</i> surface functionalized carbon nanosheets. Anodes composed of ultrathin (~15 nm) carbon nanosheets demonstrated excellent reversible specific capacity (375 mAh/g at 25 mA/g), rate performance (150 mAh/g at 2 A/g), long-term cycling performance (1000 cycles at 1 A/g) and coulombic efficiency (~100 %). Considerably higher pseudocapacitance (up to ~78 %) is also identified in this case compared to amorphous carbon particles. Spectroscopic and electrochemical studies proved Na-ion intercalation in to the disordered carbon and pseudocapacitive storage driven by oxygen-containing surface functional groups. Outstanding electrochemical performance is credited to the synergy between diffusion limited intercalation and pseudocapacitive surface Na-ion storage. The demonstrated synthetic method of <i>in situ</i> functionalized carbon nanosheets is inexpensive and scalable. The strategy of functional group and morphology induced pseudocapacitive Na-ion storage offer new prospects to design high-performance Na-ion battery electrodes.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400255","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400255","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Disordered carbon is the state of the art anode material for Na-ion batteries due to their increased interlayer spacing and good electronic conductivity. However, its practical application is hindered by average specific capacity, poor rate performance, low coulombic efficiency and limited cycling stability. Herein, we report the superior pseudocapacitance enhanced Na-ion storage of in situ surface functionalized carbon nanosheets. Anodes composed of ultrathin (~15 nm) carbon nanosheets demonstrated excellent reversible specific capacity (375 mAh/g at 25 mA/g), rate performance (150 mAh/g at 2 A/g), long-term cycling performance (1000 cycles at 1 A/g) and coulombic efficiency (~100 %). Considerably higher pseudocapacitance (up to ~78 %) is also identified in this case compared to amorphous carbon particles. Spectroscopic and electrochemical studies proved Na-ion intercalation in to the disordered carbon and pseudocapacitive storage driven by oxygen-containing surface functional groups. Outstanding electrochemical performance is credited to the synergy between diffusion limited intercalation and pseudocapacitive surface Na-ion storage. The demonstrated synthetic method of in situ functionalized carbon nanosheets is inexpensive and scalable. The strategy of functional group and morphology induced pseudocapacitive Na-ion storage offer new prospects to design high-performance Na-ion battery electrodes.

Abstract Image

Abstract Image

表面氧官能化的超薄(15 nm)碳片用于高效伪电容式钠离子存储
无序碳因其增加的层间距和良好的电子导电性而成为最先进的镎离子电池负极材料。然而,平均比容量、较差的速率性能、较低的库仑效率和有限的循环稳定性阻碍了它的实际应用。在此,我们报告了原位表面功能化碳纳米片卓越的伪电容增强型纳离子存储。由超薄(约 15 nm)碳纳米片组成的阳极表现出优异的可逆比容量(25 mA/g 时为 375 mAh/g)、速率性能(2 A/g 时为 150 mAh/g)、长期循环性能(1 A/g 时循环 1000 次)和库仑效率(约 100%)。与无定形碳颗粒相比,这种情况下的假电容(高达约 78%)也要高得多。光谱和电化学研究证明了无序碳中的钠离子插层和含氧表面官能团驱动的假电容存储。出色的电化学性能归功于扩散受限的插层和伪电容表面 Na 离子存储之间的协同作用。所展示的原位功能化碳纳米片的合成方法成本低廉且可扩展。官能团和形貌诱导的赝电容性纳离子存储策略为设计高性能纳离子电池电极提供了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信