ZnO Nanofiber Derived from Zinc Loaded Chitosan Nanofiber as an Efficient Adsorbent for Congo Red from Aqueous Solution

IF 3.9 3区 化学 Q2 POLYMER SCIENCE
Ke Long, Yixin Cui, Huibiao Meng, Qi Zhang, Yaqing Liu, Linjun Shao, Guiying Xing
{"title":"ZnO Nanofiber Derived from Zinc Loaded Chitosan Nanofiber as an Efficient Adsorbent for Congo Red from Aqueous Solution","authors":"Ke Long, Yixin Cui, Huibiao Meng, Qi Zhang, Yaqing Liu, Linjun Shao, Guiying Xing","doi":"10.1007/s10904-024-03285-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, uniform Zn<sup>2+</sup> incorporated chitosan nanofibers were first prepared by electrospinning with PEO as the cospinning agent and ZnO as the Zn<sup>2+</sup> source. Then, these composite nanofibers were carbonized at 600 <sup>o</sup>C under argon atmosphere to achieve ZnO embedded carbon (Zn@C) nanofibers. Afterward, these ZnO@C nanofibers were annealed at 400 <sup>o</sup>C under air atmosphere to prepare ZnO nanofibers. SEM, XPS and TEM results confirmed the successful preparation of ZnO nanofibers. The BET analysis shows that the surface area of ZnO nanofibers was up to 154.5 m<sup>2</sup>/g. These ZnO nanofibers exhibited excellent adsorption performance for Congo red with adsorption capacity of up to 224.2 mg/g. After adsorption, the ZnO nanofibers could be readily recovered by removal of the solution and regenerated by calcination at 400 <sup>o</sup>C for 1.0 h. Due to the fusion of ZnO nanofiber in the regeneration process, the adsorption capacity of ZnO nanofiber was a little reduced after regeneration. The ZnO nanofiber could be reused three times with satisfied adsorption capacity.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03285-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, uniform Zn2+ incorporated chitosan nanofibers were first prepared by electrospinning with PEO as the cospinning agent and ZnO as the Zn2+ source. Then, these composite nanofibers were carbonized at 600 oC under argon atmosphere to achieve ZnO embedded carbon (Zn@C) nanofibers. Afterward, these ZnO@C nanofibers were annealed at 400 oC under air atmosphere to prepare ZnO nanofibers. SEM, XPS and TEM results confirmed the successful preparation of ZnO nanofibers. The BET analysis shows that the surface area of ZnO nanofibers was up to 154.5 m2/g. These ZnO nanofibers exhibited excellent adsorption performance for Congo red with adsorption capacity of up to 224.2 mg/g. After adsorption, the ZnO nanofibers could be readily recovered by removal of the solution and regenerated by calcination at 400 oC for 1.0 h. Due to the fusion of ZnO nanofiber in the regeneration process, the adsorption capacity of ZnO nanofiber was a little reduced after regeneration. The ZnO nanofiber could be reused three times with satisfied adsorption capacity.

Abstract Image

由含锌壳聚糖纳米纤维衍生的 ZnO 纳米纤维作为水溶液中刚果红的高效吸附剂
本研究首先以 PEO 为共纺剂,ZnO 为 Zn2+ 源,通过电纺丝制备了均匀的 Zn2+ 嵌合壳聚糖纳米纤维。然后,在 600 oC 的氩气环境下对这些复合纳米纤维进行碳化,得到 ZnO 嵌入碳(Zn@C)纳米纤维。然后,将这些 ZnO@C 纳米纤维在 400 oC 的空气中退火,制备出 ZnO 纳米纤维。扫描电镜、XPS 和 TEM 结果证实成功制备了 ZnO 纳米纤维。BET 分析表明,氧化锌纳米纤维的表面积高达 154.5 m2/g。这些 ZnO 纳米纤维对刚果红具有优异的吸附性能,吸附容量高达 224.2 mg/g。吸附后的纳米氧化锌纤维可以通过去除溶液并在 400 oC 煅烧 1.0 h 后再生。纳米氧化锌纤维可重复使用三次,且吸附能力良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信