Reduction of interface defects in gate-recessed GaN HEMTs by neutral beam etching

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chia Hao Yu, Wei Hsiang Chiang, Yi-Ho Chen, Seiji Samukawa, Dong Sing Wuu, Chin-Han Chung, Ching-Lien Hsiao, Ray Hua Horng
{"title":"Reduction of interface defects in gate-recessed GaN HEMTs by neutral beam etching","authors":"Chia Hao Yu, Wei Hsiang Chiang, Yi-Ho Chen, Seiji Samukawa, Dong Sing Wuu, Chin-Han Chung, Ching-Lien Hsiao, Ray Hua Horng","doi":"10.1016/j.mtadv.2024.100519","DOIUrl":null,"url":null,"abstract":"This study investigates and compares the impact of different etching techniques on the fabrication of GaN high electron mobility transistors (HEMTs) between the inductively coupled plasma reactive ion etching (ICP-RIE) and the neutral beam etching (NBE) for the gate recess. By conducting direct current analysis, it was found that devices manufactured using the NBE exhibited superior electrical performance as compared with those produced using the ICP-RIE. These enhanced electrical characteristics include a transconductance of up to 100.4 mS/mm, a threshold voltage (V) of −2.3 V, an on/off current ratio of 1.1 × 10, a subthreshold swing (S.S.) of 99.63 mV/dec, and a remarkably low gate leakage current. Additionally, we noted varying degrees of hysteresis in the I–V characteristics were related to process disparities possibly leading to interface defects. Multi-frequency capacitance-voltage (C–V) measurements were used to identify the interface defects at the oxide/AlGaN interface of the gate. The results revealed that devices fabricated using the NBE exhibited a lower interface defect density as compared with those fabricated using the ICP-RIE, thereby elucidating the reduced hysteresis observed in the I–V characteristics. These findings indicated the significant advantages of the NBE process in the fabrication of GaN HEMTs.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100519","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates and compares the impact of different etching techniques on the fabrication of GaN high electron mobility transistors (HEMTs) between the inductively coupled plasma reactive ion etching (ICP-RIE) and the neutral beam etching (NBE) for the gate recess. By conducting direct current analysis, it was found that devices manufactured using the NBE exhibited superior electrical performance as compared with those produced using the ICP-RIE. These enhanced electrical characteristics include a transconductance of up to 100.4 mS/mm, a threshold voltage (V) of −2.3 V, an on/off current ratio of 1.1 × 10, a subthreshold swing (S.S.) of 99.63 mV/dec, and a remarkably low gate leakage current. Additionally, we noted varying degrees of hysteresis in the I–V characteristics were related to process disparities possibly leading to interface defects. Multi-frequency capacitance-voltage (C–V) measurements were used to identify the interface defects at the oxide/AlGaN interface of the gate. The results revealed that devices fabricated using the NBE exhibited a lower interface defect density as compared with those fabricated using the ICP-RIE, thereby elucidating the reduced hysteresis observed in the I–V characteristics. These findings indicated the significant advantages of the NBE process in the fabrication of GaN HEMTs.
通过中性束蚀刻减少栅极后处理 GaN HEMT 的界面缺陷
本研究调查并比较了栅极凹槽采用电感耦合等离子体反应离子蚀刻(ICP-RIE)和中性束蚀刻(NBE)两种不同蚀刻技术对制造氮化镓高电子迁移率晶体管(HEMT)的影响。通过直流分析发现,与使用 ICP-RIE 生产的器件相比,使用 NBE 生产的器件具有更优越的电气性能。这些增强的电气特性包括高达 100.4 mS/mm 的跨导、-2.3 V 的阈值电压 (V)、1.1 × 10 的导通/关断电流比、99.63 mV/dec 的阈下摆幅 (S.S.) 以及极低的栅极漏电流。此外,我们注意到 I-V 特性存在不同程度的滞后,这与可能导致界面缺陷的工艺差异有关。多频电容-电压 (C-V) 测量用于确定栅极氧化物/氮化铝界面的界面缺陷。结果显示,与使用 ICP-RIE 制造的器件相比,使用 NBE 制造的器件显示出更低的界面缺陷密度,从而解释了 I-V 特性中观察到的滞后现象的减少。这些发现表明了 NBE 工艺在制造 GaN HEMT 方面的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信