{"title":"Autoreplicative random forests with applications to missing value imputation","authors":"Ekaterina Antonenko, Ander Carreño, Jesse Read","doi":"10.1007/s10994-024-06584-1","DOIUrl":null,"url":null,"abstract":"<p>Missing values are a common problem in data science and machine learning. Removing instances with missing values is a straightforward workaround, but this can significantly hinder subsequent data analysis, particularly when features outnumber instances. There are a variety of methodologies proposed in the literature for imputing missing values. Denoising Autoencoders, for example, have been leveraged efficiently for imputation. However, neural network approaches have been relatively less effective on smaller datasets. In this work, we propose Autoreplicative Random Forests (ARF) as a multi-output learning approach, which we introduce in the context of a framework that may impute via either an iterative or procedural process. Experiments on several low- and high-dimensional datasets show that ARF is computationally efficient and exhibits better imputation performance than its competitors, including neural network approaches. In order to provide statistical analysis and mathematical background to the proposed missing value imputation framework, we also propose probabilistic ARFs, where the confidence values are provided over different imputation hypotheses, therefore maximizing the utility of such a framework in a machine-learning pipeline targeting predictive performance.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06584-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Missing values are a common problem in data science and machine learning. Removing instances with missing values is a straightforward workaround, but this can significantly hinder subsequent data analysis, particularly when features outnumber instances. There are a variety of methodologies proposed in the literature for imputing missing values. Denoising Autoencoders, for example, have been leveraged efficiently for imputation. However, neural network approaches have been relatively less effective on smaller datasets. In this work, we propose Autoreplicative Random Forests (ARF) as a multi-output learning approach, which we introduce in the context of a framework that may impute via either an iterative or procedural process. Experiments on several low- and high-dimensional datasets show that ARF is computationally efficient and exhibits better imputation performance than its competitors, including neural network approaches. In order to provide statistical analysis and mathematical background to the proposed missing value imputation framework, we also propose probabilistic ARFs, where the confidence values are provided over different imputation hypotheses, therefore maximizing the utility of such a framework in a machine-learning pipeline targeting predictive performance.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.