{"title":"Comparison of two flow measurement devices for use in fire experiments","authors":"Giovanni Di Cristina, Rodney A. Bryant","doi":"10.1016/j.proci.2024.105557","DOIUrl":null,"url":null,"abstract":"Bi-directional probes are utilized throughout fire science to measure fire-induced flows due to their ability to measure flow which changes direction, and to withstand hostile environments. However, they are not available commercially and researchers must take it upon themselves to make and manufacture them. S-type pitot probes (S-probes) work on the same principle as bi-directional probes, measuring the differential pressure between two openings, thereby offering the same benefits. However, S-probes also feature reliable manufacturing and calibration standards. In this study, the performance of bi-directional and S-probes is characterized against pitot-static probes in two scenarios. First, measurements of a steady, smooth flow in a well-characterized wind tunnel are examined. Second, the probes are used to measure the velocity profile across a turbulent jet from a blower fan. In both scenarios, the S-probe performed comparable to or better than the bi-directional probe in terms of accuracy. It is found that S-probes have similar performance to bi-directional probes in well conditioned flows. In the turbulent jet flow measurements, S-probe measurements are within 2% of pitot-static measurements in the core region of the jet, while bi-directional probes are within 6%.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"10 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105557","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bi-directional probes are utilized throughout fire science to measure fire-induced flows due to their ability to measure flow which changes direction, and to withstand hostile environments. However, they are not available commercially and researchers must take it upon themselves to make and manufacture them. S-type pitot probes (S-probes) work on the same principle as bi-directional probes, measuring the differential pressure between two openings, thereby offering the same benefits. However, S-probes also feature reliable manufacturing and calibration standards. In this study, the performance of bi-directional and S-probes is characterized against pitot-static probes in two scenarios. First, measurements of a steady, smooth flow in a well-characterized wind tunnel are examined. Second, the probes are used to measure the velocity profile across a turbulent jet from a blower fan. In both scenarios, the S-probe performed comparable to or better than the bi-directional probe in terms of accuracy. It is found that S-probes have similar performance to bi-directional probes in well conditioned flows. In the turbulent jet flow measurements, S-probe measurements are within 2% of pitot-static measurements in the core region of the jet, while bi-directional probes are within 6%.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.