New Insights on the Corrosion Behavior of a Cr–W–V–Mo‐Rich Stainless Steel Containing Cr7C3–Cr23C6 Core–Shell Carbides: A Comparative Study

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Majdouline Maher, Itziar Iraola‐Arregui, Mohammed Lasri, Rachid Idouhli, Hicham Ben Youcef, Benaissa Rhouta, Vera Trabadelo
{"title":"New Insights on the Corrosion Behavior of a Cr–W–V–Mo‐Rich Stainless Steel Containing Cr7C3–Cr23C6 Core–Shell Carbides: A Comparative Study","authors":"Majdouline Maher, Itziar Iraola‐Arregui, Mohammed Lasri, Rachid Idouhli, Hicham Ben Youcef, Benaissa Rhouta, Vera Trabadelo","doi":"10.1002/srin.202400233","DOIUrl":null,"url":null,"abstract":"The goal of this study is to provide new insights into the corrosion mechanism of core‐shell carbides containing steels. The corrosion behavior of two heat‐treated Cr–W–V–Mo‐rich stainless steels is evaluated using electrochemical techniques. The studied steels have different carbides microstructure, the first has core–shell carbides (Cr<jats:sub>7</jats:sub>C<jats:sub>3</jats:sub>–Cr<jats:sub>23</jats:sub>C<jats:sub>6</jats:sub>) in a ferritic matrix, while the second has conventional Cr<jats:sub>23</jats:sub>C<jats:sub>6</jats:sub> carbides in a duplex matrix. The open‐circuit potential results show a nobler behavior of the duplex sample; it is noticed in the potentiodynamic polarization curves where the core–shell carbides containing steel have an oxidation peak at −0.37 V versus saturated calomel electrode with a current density of 0.19 mA cm<jats:sup>−2</jats:sup>, contrary to the duplex steel that shows a passive behavior. Electrochemical impedance spectroscopy demonstrates the presence of two degradation mechanisms in the core–shell carbide steel, while the other steel is governed by charge transfer only. These findings are supported by scanning electron microscopy examination that shows the preferential corrosion of the shell while the core and the duplex matrix are kept intact. The passive film stability is evaluated using Mott–Schottky analysis and it shows the presence of a higher defect density on the passive film of the core–shell carbides containing steel.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study is to provide new insights into the corrosion mechanism of core‐shell carbides containing steels. The corrosion behavior of two heat‐treated Cr–W–V–Mo‐rich stainless steels is evaluated using electrochemical techniques. The studied steels have different carbides microstructure, the first has core–shell carbides (Cr7C3–Cr23C6) in a ferritic matrix, while the second has conventional Cr23C6 carbides in a duplex matrix. The open‐circuit potential results show a nobler behavior of the duplex sample; it is noticed in the potentiodynamic polarization curves where the core–shell carbides containing steel have an oxidation peak at −0.37 V versus saturated calomel electrode with a current density of 0.19 mA cm−2, contrary to the duplex steel that shows a passive behavior. Electrochemical impedance spectroscopy demonstrates the presence of two degradation mechanisms in the core–shell carbide steel, while the other steel is governed by charge transfer only. These findings are supported by scanning electron microscopy examination that shows the preferential corrosion of the shell while the core and the duplex matrix are kept intact. The passive film stability is evaluated using Mott–Schottky analysis and it shows the presence of a higher defect density on the passive film of the core–shell carbides containing steel.
对含有 Cr7C3-Cr23C6 核壳碳化物的 Cr-W-V-Mo-Rich 不锈钢腐蚀行为的新认识:比较研究
本研究的目的是为含核壳碳化物钢的腐蚀机理提供新的见解。采用电化学技术评估了两种富含 Cr-W-V-Mo 的热处理不锈钢的腐蚀行为。所研究的钢具有不同的碳化物微观结构,第一种钢的铁素体基体中含有核壳碳化物(Cr7C3-Cr23C6),而第二种钢的双相基体中含有传统的 Cr23C6 碳化物。开路电位结果表明,双相钢样品的性能更优越;从电位极化曲线中可以看出,含有核壳碳化物的钢在电流密度为 0.19 mA cm-2 的饱和甘汞电极上会出现-0.37 V 的氧化峰,而双相钢则相反,表现出被动的性能。电化学阻抗光谱显示,芯壳碳化物钢存在两种降解机制,而其他钢只受电荷转移的影响。扫描电子显微镜检查证实了这些发现,检查结果表明外壳优先受到腐蚀,而内核和双相基体保持完好。利用莫特-肖特基分析评估了被动膜的稳定性,结果表明含有核壳碳化物的钢的被动膜上存在较高的缺陷密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信