Zengwei Guo, Jianhong Fan, Shengyang Feng, Chaoyuan Wu, Guowen Yao
{"title":"Bayesian-Network-Based Evaluation for Corrosion State of Reinforcements Embedded in Concrete by Multiple Electrochemical Indicators","authors":"Zengwei Guo, Jianhong Fan, Shengyang Feng, Chaoyuan Wu, Guowen Yao","doi":"10.1007/s10921-024-01100-w","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical indicators including corrosion potential (<i>E</i><sub>corr</sub>), concrete resistivity (<i>ρ</i>), corrosion current density (<i>i</i><sub>corr</sub>), and polarization resistance (<i>R</i><sub><i>ρ</i></sub>) are pivotal in the evaluation of the degradation state of reinforcements embedded in concrete. Notwithstanding, extensive investigations traditionally hinge on a singular electrochemical metric for the appraisal of rebar corrosion. The current study transcends this conventional approach by integrating multiple electrochemical detections, significantly improving the accuracy in ascertaining the corrosion status of reinforcing bars within concrete. In this paper, a Bayesian network model is developed, synthesizing results from four electrochemical indictors obtained from published literatures. This model effectively addresses the challenge of integrating unmeasured electrochemical parameters in cases where only a limited set is tested in practical engineering, culminating in a more comprehensive assessment dataset. Further, this study progresses to quantitatively assess the reinforcement corrosion status by devising and fine-tuning an integrated model. The Bayesian network notably excels in extrapolating untested results and accurately determining the thresholds for rebar corrosion status, thus significantly improving the overall assessment capability. The Bayesian network, as employed in this study, computes median <i>E</i><sub>corr</sub> and <i>i</i><sub>corr</sub> values at -282mV and 0.168µA/cm², respectively. These computed values exhibit a deviation within 15% of experimental data, aligning with the uncertainty range stipulated by the ASTM C876-91 standards.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01100-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical indicators including corrosion potential (Ecorr), concrete resistivity (ρ), corrosion current density (icorr), and polarization resistance (Rρ) are pivotal in the evaluation of the degradation state of reinforcements embedded in concrete. Notwithstanding, extensive investigations traditionally hinge on a singular electrochemical metric for the appraisal of rebar corrosion. The current study transcends this conventional approach by integrating multiple electrochemical detections, significantly improving the accuracy in ascertaining the corrosion status of reinforcing bars within concrete. In this paper, a Bayesian network model is developed, synthesizing results from four electrochemical indictors obtained from published literatures. This model effectively addresses the challenge of integrating unmeasured electrochemical parameters in cases where only a limited set is tested in practical engineering, culminating in a more comprehensive assessment dataset. Further, this study progresses to quantitatively assess the reinforcement corrosion status by devising and fine-tuning an integrated model. The Bayesian network notably excels in extrapolating untested results and accurately determining the thresholds for rebar corrosion status, thus significantly improving the overall assessment capability. The Bayesian network, as employed in this study, computes median Ecorr and icorr values at -282mV and 0.168µA/cm², respectively. These computed values exhibit a deviation within 15% of experimental data, aligning with the uncertainty range stipulated by the ASTM C876-91 standards.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.