{"title":"Thermally Stable Perovskite Solar Cells with Fluoropolymer Coating","authors":"Yuki Fujita, Dai Semba, Badamgarav Purev-Ochir, Nozomi Nakamura, Telugu Bhim Raju, Toshinori Matsushima, Chihaya Adachi","doi":"10.1002/solr.202400342","DOIUrl":null,"url":null,"abstract":"<p>Halide perovskites are promising as the light absorbers of solar cells with efficient solar power conversion. However, why the degradation of perovskite solar cells (PSCs), especially at high temperatures, happens has not been completely understood to date. Herein, it is shown that evaporation of 4-<i>tert</i>-butylpyridine (4-tBP) from the hole transport layer (HTL) of 2,2',7,7'-tetrakis(<i>N</i>,<i>N</i>-di-<i>p</i>-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is one of possible degradation mechanisms in PSCs at a high temperature of 85 °C. In fresh PSCs, the chemical doping of the spiro-OMeTAD HTL with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is not so efficient because of the formation of a LiTFSI:4-tBP complex in the HTL. When PSCs are placed at 85 °C, 4-tBP gradually evaporates from the HTL, resulting in the dissociation of the LiTFSI:4-tBP complex. This 4-tBP evaporation enhances the chemical doping of spiro-OMeTAD by LiTFSI and makes the hole transport level of the spiro-OMeTAD HTL deeper, thereby impeding hole extraction at the perovskite/spiro-OMeTAD/Au interfaces. Herein, the 4-tBP evaporation by covering PSCs with a fluoro-polymer CYTOP layer, significantly improving the high-temperature durability of PSCs, is suppressed. The basic understanding obtained in this study would help promote the spread of more thermally durable PSC products in the future.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 16","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400342","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Halide perovskites are promising as the light absorbers of solar cells with efficient solar power conversion. However, why the degradation of perovskite solar cells (PSCs), especially at high temperatures, happens has not been completely understood to date. Herein, it is shown that evaporation of 4-tert-butylpyridine (4-tBP) from the hole transport layer (HTL) of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is one of possible degradation mechanisms in PSCs at a high temperature of 85 °C. In fresh PSCs, the chemical doping of the spiro-OMeTAD HTL with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is not so efficient because of the formation of a LiTFSI:4-tBP complex in the HTL. When PSCs are placed at 85 °C, 4-tBP gradually evaporates from the HTL, resulting in the dissociation of the LiTFSI:4-tBP complex. This 4-tBP evaporation enhances the chemical doping of spiro-OMeTAD by LiTFSI and makes the hole transport level of the spiro-OMeTAD HTL deeper, thereby impeding hole extraction at the perovskite/spiro-OMeTAD/Au interfaces. Herein, the 4-tBP evaporation by covering PSCs with a fluoro-polymer CYTOP layer, significantly improving the high-temperature durability of PSCs, is suppressed. The basic understanding obtained in this study would help promote the spread of more thermally durable PSC products in the future.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.