Advancements in Nano-Mediated Biosensors: Targeting Cancer Exosome Detection

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Abhay Dev Tripathi, Yamini Labh, Soumya Katiyar, Vivek K. Chaturvedi, Pooja Sharma, Abha Mishra
{"title":"Advancements in Nano-Mediated Biosensors: Targeting Cancer Exosome Detection","authors":"Abhay Dev Tripathi, Yamini Labh, Soumya Katiyar, Vivek K. Chaturvedi, Pooja Sharma, Abha Mishra","doi":"10.1007/s10876-024-02676-z","DOIUrl":null,"url":null,"abstract":"<p>Cancer-derived exosomes, a subset of extracellular vesicles, carry vital information about tumor progression, metastasis, and drug resistance, making them attractive targets for cancer diagnostics and therapeutics. The identification of these cancer exosomes with high sensitivity and specificity has enormous promise for early diagnosis and prognosis. Nano-mediated biological sensors are establishing themselves as innovative techniques for detecting cancer exosomes based on the distinctive physicochemical attributes of nanomaterials to improve detection sensitivity and specificity. This article presents an overview of the recent developments in nano-mediated biosensors directed particularly toward the detection of cancer exosomes. The development of ultrasensitive sensors has been enhanced by using nanomaterials such as magnetic nanoparticles, quantum dots, and gold nanoparticles. Surface modifications of these nanomaterials by conjugating the cancer-specific antibodies or aptamers facilitate target recognition and binding of cancer exosomes, thus increasing the sensitivity of detection. This review compiles different detection techniques, including SERS, Electrochemical, SPR, Chemiluminescence, and Fluorescence-based biosensor detection, in combination with different nanomaterials that are currently being researched or utilized as biosensors.</p>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10876-024-02676-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer-derived exosomes, a subset of extracellular vesicles, carry vital information about tumor progression, metastasis, and drug resistance, making them attractive targets for cancer diagnostics and therapeutics. The identification of these cancer exosomes with high sensitivity and specificity has enormous promise for early diagnosis and prognosis. Nano-mediated biological sensors are establishing themselves as innovative techniques for detecting cancer exosomes based on the distinctive physicochemical attributes of nanomaterials to improve detection sensitivity and specificity. This article presents an overview of the recent developments in nano-mediated biosensors directed particularly toward the detection of cancer exosomes. The development of ultrasensitive sensors has been enhanced by using nanomaterials such as magnetic nanoparticles, quantum dots, and gold nanoparticles. Surface modifications of these nanomaterials by conjugating the cancer-specific antibodies or aptamers facilitate target recognition and binding of cancer exosomes, thus increasing the sensitivity of detection. This review compiles different detection techniques, including SERS, Electrochemical, SPR, Chemiluminescence, and Fluorescence-based biosensor detection, in combination with different nanomaterials that are currently being researched or utilized as biosensors.

Abstract Image

纳米生物传感器的进展:以癌症外泌体检测为目标
癌症衍生的外泌体是细胞外囊泡的一个子集,携带有关肿瘤进展、转移和耐药性的重要信息,因此成为癌症诊断和治疗的诱人靶标。对这些癌症外泌体进行高灵敏度和高特异性的鉴定,为早期诊断和预后带来了巨大希望。基于纳米材料独特的物理化学属性,纳米生物传感器正在成为检测癌症外泌体的创新技术,以提高检测灵敏度和特异性。本文概述了纳米介导生物传感器的最新发展,尤其是在检测癌症外泌体方面。使用磁性纳米粒子、量子点和金纳米粒子等纳米材料促进了超灵敏传感器的开发。通过连接癌症特异性抗体或适配体对这些纳米材料进行表面修饰,可促进癌症外泌体的目标识别和结合,从而提高检测灵敏度。本综述汇编了不同的检测技术,包括基于 SERS、电化学、SPR、化学发光和荧光的生物传感器检测,并结合了目前正在研究或用作生物传感器的不同纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信