Molecular characteristics of rhesus macaque interferon-lambda receptor 1 (mmuIFNLR1): Sequence identity, distribution and alteration after simian-human immunodeficiency virus infection in the skin and buccal mucosa
{"title":"Molecular characteristics of rhesus macaque interferon-lambda receptor 1 (mmuIFNLR1): Sequence identity, distribution and alteration after simian-human immunodeficiency virus infection in the skin and buccal mucosa","authors":"Rui-Jie Liu, Gui-Bo Yang","doi":"10.1016/j.dci.2024.105236","DOIUrl":null,"url":null,"abstract":"<div><p>Interferon-lambda receptor 1 (IFNLR1) is the key to interferon-lambda's biological activities. Rhesus macaques (<em>Macaca mulatta</em>) are supposedly more suitable for translational studies on interferon lambda-associated human diseases, yet little is known about their IFNLR1 (mmuIFNLR1). In this study, we cloned the coding sequence of mmu<em>IFNLR1</em>, examined its variants, and determined the distribution of mmuIFNLR1 mRNA and immunoreactivity in the buccal mucosa and arm skin of normal and immunodeficiency virus (SHIV/SIV) infected rhesus macaques. It was found that mmuIFNLR1 has 93.1% amino acid sequence identity to that of humans; all the amino acid residues of mmuIFNLR1 signal peptide, transmembrane region, PxxLxF motif and those essential for ligand binding are identical to that of humans; 6 variants of mmu<em>IFNLR1</em>, including the ones corresponding to that of humans were detected; IFNLR1 immunoreactivity was localized in primarily the epithelia of buccal mucosa and arm skin; SHIV/SIV infection could affect the levels of mmuIFNLR1 mRNA and immunoreactivity. These data expanded our knowledge on mmu<em>IFNLR1</em> and provided a scientific basis for rational use of rhesus macaques in studies of IFN-λ associated human diseases like AIDS. Future studies testing IFNLR1-targeting therapeutics in rhesus macaques were warranted.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"160 ","pages":"Article 105236"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24001083","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Interferon-lambda receptor 1 (IFNLR1) is the key to interferon-lambda's biological activities. Rhesus macaques (Macaca mulatta) are supposedly more suitable for translational studies on interferon lambda-associated human diseases, yet little is known about their IFNLR1 (mmuIFNLR1). In this study, we cloned the coding sequence of mmuIFNLR1, examined its variants, and determined the distribution of mmuIFNLR1 mRNA and immunoreactivity in the buccal mucosa and arm skin of normal and immunodeficiency virus (SHIV/SIV) infected rhesus macaques. It was found that mmuIFNLR1 has 93.1% amino acid sequence identity to that of humans; all the amino acid residues of mmuIFNLR1 signal peptide, transmembrane region, PxxLxF motif and those essential for ligand binding are identical to that of humans; 6 variants of mmuIFNLR1, including the ones corresponding to that of humans were detected; IFNLR1 immunoreactivity was localized in primarily the epithelia of buccal mucosa and arm skin; SHIV/SIV infection could affect the levels of mmuIFNLR1 mRNA and immunoreactivity. These data expanded our knowledge on mmuIFNLR1 and provided a scientific basis for rational use of rhesus macaques in studies of IFN-λ associated human diseases like AIDS. Future studies testing IFNLR1-targeting therapeutics in rhesus macaques were warranted.
期刊介绍:
Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.