Experimentally Demonstrating Indefinite Causal Order Algorithms to Solve the Generalized Deutsch's Problem

IF 4.4 Q1 OPTICS
Wen-Qiang Liu, Zhe Meng, Bo-Wen Song, Jian Li, Qing-Yuan Wu, Xiao-Xiao Chen, Jin-Yang Hong, An-Ning Zhang, Zhang-Qi Yin
{"title":"Experimentally Demonstrating Indefinite Causal Order Algorithms to Solve the Generalized Deutsch's Problem","authors":"Wen-Qiang Liu,&nbsp;Zhe Meng,&nbsp;Bo-Wen Song,&nbsp;Jian Li,&nbsp;Qing-Yuan Wu,&nbsp;Xiao-Xiao Chen,&nbsp;Jin-Yang Hong,&nbsp;An-Ning Zhang,&nbsp;Zhang-Qi Yin","doi":"10.1002/qute.202400181","DOIUrl":null,"url":null,"abstract":"<p>Deutsch's algorithm is the first quantum algorithm to demonstrate an advantage over classical algorithms. Here, Deutsch's problem is generalized to <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> functions and a quantum algorithm with an indefinite causal order is proposed to solve this problem. The algorithm not only reduces the number of queries to the black box by half compared to the classical algorithm, but also significantly decreases the complexity of the quantum circuit and the number of required quantum gates compared to the generalized Deutsch's algorithm. The algorithm is experimentally demonstrated in a stable Sagnac loop interferometer with a common path, which overcomes the obstacles of both phase instability and low fidelity of the Mach–Zehnder interferometer. The experimental results show both ultrahigh and robust success probabilities <span></span><math>\n <semantics>\n <mrow>\n <mo>≈</mo>\n <mrow>\n <mn>99.7</mn>\n </mrow>\n <mo>%</mo>\n </mrow>\n <annotation>${\\approx} {99.7}\\%$</annotation>\n </semantics></math>. This study opens a path toward solving practical problems with indefinite cause-order quantum circuits.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deutsch's algorithm is the first quantum algorithm to demonstrate an advantage over classical algorithms. Here, Deutsch's problem is generalized to n $n$ functions and a quantum algorithm with an indefinite causal order is proposed to solve this problem. The algorithm not only reduces the number of queries to the black box by half compared to the classical algorithm, but also significantly decreases the complexity of the quantum circuit and the number of required quantum gates compared to the generalized Deutsch's algorithm. The algorithm is experimentally demonstrated in a stable Sagnac loop interferometer with a common path, which overcomes the obstacles of both phase instability and low fidelity of the Mach–Zehnder interferometer. The experimental results show both ultrahigh and robust success probabilities 99.7 % ${\approx} {99.7}\%$ . This study opens a path toward solving practical problems with indefinite cause-order quantum circuits.

Abstract Image

实验演示解决广义多伊奇问题的不定因果顺序算法
Deutsch算法是第一个证明其优于经典算法的量子算法。在这里,Deutsch 的问题被推广到函数上,并提出了一种具有不确定因果顺序的量子算法来解决这个问题。与经典算法相比,该算法不仅减少了一半的黑盒查询次数,而且与广义的多伊奇算法相比,大大降低了量子电路的复杂性和所需量子门的数量。该算法在具有共同路径的稳定萨格纳克环路干涉仪中进行了实验演示,克服了马赫-泽恩德干涉仪相位不稳定和保真度低的障碍。实验结果显示了超高和稳健的成功概率。这项研究为解决不定因阶量子电路的实际问题开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信