Investigation of electrochemical, structural, electronic, thermodynamic, and optical properties of LiTi2O4 cathode material for Li-ion battery: an Ab Initio calculations
{"title":"Investigation of electrochemical, structural, electronic, thermodynamic, and optical properties of LiTi2O4 cathode material for Li-ion battery: an Ab Initio calculations","authors":"A. Erraji, R. Masrour, L. Xu","doi":"10.1007/s11581-024-05744-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we have conducted an in-depth investigation into the structural, electronic characteristics, and thermodynamic properties of the LiTi<sub>2</sub>O<sub>4</sub> compound using first-principles calculations grounded in density functional theory with the generalized gradient approximation. Our findings reveal that the LiTi<sub>2</sub>O<sub>4</sub> compound possesses a calculated lattice constant of 8.407 Å. Furthermore, we have derived critical battery-related properties, including an average voltage of 1.53 V versus Li/Li<sup>+</sup> and an energy density of 245 Wh/kg. To deepen our understanding of LiTi<sub>2</sub>O<sub>4</sub>, we have explored its thermodynamic properties employing the quasi-harmonic Debye model. These properties encompass the Debye temperature, volume variation, compressibility modulus, specific capacity, and thermal capacity. Importantly, we have observed that the Debye stiffness of LiTi<sub>2</sub>O<sub>4</sub> increases with rising pressure. Moreover, we have conducted measurements to assess various optical properties of the LiTi<sub>2</sub>O<sub>4</sub> compound. These properties include the absorption coefficient, photoconductivity, and reflectivity.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05744-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we have conducted an in-depth investigation into the structural, electronic characteristics, and thermodynamic properties of the LiTi2O4 compound using first-principles calculations grounded in density functional theory with the generalized gradient approximation. Our findings reveal that the LiTi2O4 compound possesses a calculated lattice constant of 8.407 Å. Furthermore, we have derived critical battery-related properties, including an average voltage of 1.53 V versus Li/Li+ and an energy density of 245 Wh/kg. To deepen our understanding of LiTi2O4, we have explored its thermodynamic properties employing the quasi-harmonic Debye model. These properties encompass the Debye temperature, volume variation, compressibility modulus, specific capacity, and thermal capacity. Importantly, we have observed that the Debye stiffness of LiTi2O4 increases with rising pressure. Moreover, we have conducted measurements to assess various optical properties of the LiTi2O4 compound. These properties include the absorption coefficient, photoconductivity, and reflectivity.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.