{"title":"Graphite–Si@TiO2 Core–Shell Nanoparticles as Composite Anode for Li‐Ion Batteries: Postcycling Analysis","authors":"Bhavya Nidhi Vats, Raghvendra Gupta, Amit Gupta, Shahab Fatima, Deepak Kumar","doi":"10.1002/ente.202400874","DOIUrl":null,"url":null,"abstract":"The present work deals with the postcycling analysis of the graphite‐based composite anodes, graphite reinforced with bare silicon nanoparticles (GrSi), and Si@TiO<jats:sub>2</jats:sub> core–shell nanoparticles (GrCS), for lithium‐ion batteries. The electrochemical behavior is recorded through galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) tests. The postcyclic analysis is done using material and structural characterization. The GrSi anode demonstrates a higher initial specific capacity but lower cyclic stability relative to the GrCS anode. The capacity retention for the GrSi anode is ≈57%, while for the GrCS anode it is ≈75%. After cycling, the EIS analysis indicates that GrSi anode exhibits higher resistance than GrCS anodes. The cross‐sectional appearance of cycled anodes reveals minimal changes in the surface morphology of the GrCS anode, with a ≈75% thickness increase for the GrSi anode and ≈35% for the GrCS anode. The changed electrochemical behavior is attributed to the change in the composition of the solid–electrolyte interphase layer, as confirmed by X‐ray photo spectroscopy, and minor loss in crystallinity of GrCS anode material, as confirmed by X‐ray diffraction. The study provides insights into the mechanisms governing material degradation during the electrochemical processes in the composite anodes.","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"37 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/ente.202400874","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The present work deals with the postcycling analysis of the graphite‐based composite anodes, graphite reinforced with bare silicon nanoparticles (GrSi), and Si@TiO2 core–shell nanoparticles (GrCS), for lithium‐ion batteries. The electrochemical behavior is recorded through galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) tests. The postcyclic analysis is done using material and structural characterization. The GrSi anode demonstrates a higher initial specific capacity but lower cyclic stability relative to the GrCS anode. The capacity retention for the GrSi anode is ≈57%, while for the GrCS anode it is ≈75%. After cycling, the EIS analysis indicates that GrSi anode exhibits higher resistance than GrCS anodes. The cross‐sectional appearance of cycled anodes reveals minimal changes in the surface morphology of the GrCS anode, with a ≈75% thickness increase for the GrSi anode and ≈35% for the GrCS anode. The changed electrochemical behavior is attributed to the change in the composition of the solid–electrolyte interphase layer, as confirmed by X‐ray photo spectroscopy, and minor loss in crystallinity of GrCS anode material, as confirmed by X‐ray diffraction. The study provides insights into the mechanisms governing material degradation during the electrochemical processes in the composite anodes.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.