On 𝐿𝑝 boundedness of rough Fourier integral operators

IF 1 3区 数学 Q1 MATHEMATICS
Guoning Wu, Jie Yang
{"title":"On 𝐿𝑝 boundedness of rough Fourier integral operators","authors":"Guoning Wu, Jie Yang","doi":"10.1515/forum-2023-0443","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0001.png\"/> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of rough Fourier integral operators <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>φ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0002.png\"/> <jats:tex-math>T_{a,\\varphi}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with amplitude <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msubsup> <m:mi>S</m:mi> <m:mi>ρ</m:mi> <m:mi>m</m:mi> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0003.png\"/> <jats:tex-math>a(x,\\xi)\\in L^{\\infty}S_{\\rho}^{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and phase function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>φ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0004.png\"/> <jats:tex-math>\\varphi(x,\\xi)\\in{L^{\\infty}}{\\Phi^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> which satisfies a measure condition. We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>φ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0002.png\"/> <jats:tex-math>T_{a,\\varphi}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0001.png\"/> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0007.png\"/> <jats:tex-math>1\\leq p\\leq\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>&lt;</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mi>p</m:mi> </m:mfrac> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>ρ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>p</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0008.png\"/> <jats:tex-math>m&lt;\\frac{n(\\rho-1)}{p}-\\frac{\\rho(n-1)}{2p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0009.png\"/> <jats:tex-math>1\\leq p\\leq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>&lt;</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:mfrac> <m:mo>−</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mi>ρ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mi>p</m:mi> </m:mfrac> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0010.png\"/> <jats:tex-math>m&lt;\\frac{n(\\rho-1)}{2}-\\frac{\\rho(n-1)}{2}(1-\\frac{1}{p})</jats:tex-math> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0011.png\"/> <jats:tex-math>2\\leq p\\leq\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our main results extend and improve some known results about <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0443_ineq_0001.png\"/> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> boundedness of Fourier integral operators.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0443","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the L p L^{p} boundedness of rough Fourier integral operators T a , φ T_{a,\varphi} with amplitude a ( x , ξ ) L S ρ m a(x,\xi)\in L^{\infty}S_{\rho}^{m} and phase function φ ( x , ξ ) L Φ 2 \varphi(x,\xi)\in{L^{\infty}}{\Phi^{2}} which satisfies a measure condition. We show that T a , φ T_{a,\varphi} is bounded on L p L^{p} for 1 p 1\leq p\leq\infty if m < n ( ρ 1 ) p ρ ( n 1 ) 2 p m<\frac{n(\rho-1)}{p}-\frac{\rho(n-1)}{2p} when 1 p 2 1\leq p\leq 2 or m < n ( ρ 1 ) 2 ρ ( n 1 ) 2 ( 1 1 p ) m<\frac{n(\rho-1)}{2}-\frac{\rho(n-1)}{2}(1-\frac{1}{p}) when 2 p 2\leq p\leq\infty . Our main results extend and improve some known results about L p L^{p} boundedness of Fourier integral operators.
论粗糙傅里叶积分算子的 "天线 "有界性
本文讨论了粗糙傅立叶积分算子 T a , φ T_{a,\varphi} 的 L p L^{p} 有界性,其振幅 a ( x , ξ ) ∈ L ∞ S ρ m a(x、\xi)\in L^{\infty}S_{\rho}^{m} 和相位函数 φ ( x , ξ ) ∈ L ∞ Φ 2 \varphi(x,\xi)\in{L^{\infty}}\{Phi^{2}} ,它满足一个度量条件。如果 m < n ( ρ - 1 ) p - ρ ( n - 1 ) 2 p m<;\frac{n(\rho-1)}{p}-\frac{rho(n-1)}{2p} when 1 ≤ p ≤ 2 1\leq p\leq 2 or m < n ( ρ - 1 ) 2 - ρ ( n - 1 ) 2 ( 1 - 1 p ) m<;\frac{n(\rho-1)}{2}-\frac{rho(n-1)}{2}(1-\frac{1}{p}) when 2 ≤ p ≤ ∞ 2\leq p\leq\infty.我们的主要结果扩展并改进了关于傅里叶积分算子 L p L^{p} 有界性的一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信