Amy L. Elson , Lorenz Schwark , Jessica H. Whiteside , Peter Hopper , Stephen F. Poropat , Alex I. Holman , Kliti Grice
{"title":"A paleoenvironmental and ecological analysis of biomarkers from the Eocene Fossil Basin, Green River Formation, U.S.A.","authors":"Amy L. Elson , Lorenz Schwark , Jessica H. Whiteside , Peter Hopper , Stephen F. Poropat , Alex I. Holman , Kliti Grice","doi":"10.1016/j.orggeochem.2024.104830","DOIUrl":null,"url":null,"abstract":"<div><p>Exceptionally well-preserved fossil specimens in the Fossil Basin of the Green River Formation (GRF) have made it the subject of extensive paleontological study, but the organic molecular framework that evolved during a key paleoclimatic and fossil-bearing interval during the early Eocene is poorly understood. Whereas the organic geochemistry of the larger co-eval GRF basins has been extensively characterized, our molecular understanding of the fossil-bearing layers in the Fossil Basin and the drivers of the exceptional fossilization therein remain unresolved. To bridge this gap, sediments from the famous 18″-layer — the fossiliferous horizon that is extensively quarried for exceptional soft-tissue fossils — were sampled for organic and isotopic geochemical characterisation. The results show that the Fossil Basin sedimentary archive is geochemically distinct from other GRF basins, as exemplified by the absence of the classical biomarker β-carotane and minimal evidence for the large green algal blooms that predominate in the other GRF lake basins. Photic zone euxinia (PZE), anoxia, and a freshwater cap enabled development of a productive and diverse ecosystem. Salinity and density stratification prevented vertical mixing of the water column and supported preservation of decaying carcasses. In contrast to other GRF basins, the small areal extent and ellipsoid shape of the Fossil Basin focussed terrestrial and freshwater inputs into the lake, resulting in ideal conditions for preservation of an exceptional fossil record.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"195 ","pages":"Article 104830"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146638024000950/pdfft?md5=5b7861c92f5e681baa77eda2500b89e7&pid=1-s2.0-S0146638024000950-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000950","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exceptionally well-preserved fossil specimens in the Fossil Basin of the Green River Formation (GRF) have made it the subject of extensive paleontological study, but the organic molecular framework that evolved during a key paleoclimatic and fossil-bearing interval during the early Eocene is poorly understood. Whereas the organic geochemistry of the larger co-eval GRF basins has been extensively characterized, our molecular understanding of the fossil-bearing layers in the Fossil Basin and the drivers of the exceptional fossilization therein remain unresolved. To bridge this gap, sediments from the famous 18″-layer — the fossiliferous horizon that is extensively quarried for exceptional soft-tissue fossils — were sampled for organic and isotopic geochemical characterisation. The results show that the Fossil Basin sedimentary archive is geochemically distinct from other GRF basins, as exemplified by the absence of the classical biomarker β-carotane and minimal evidence for the large green algal blooms that predominate in the other GRF lake basins. Photic zone euxinia (PZE), anoxia, and a freshwater cap enabled development of a productive and diverse ecosystem. Salinity and density stratification prevented vertical mixing of the water column and supported preservation of decaying carcasses. In contrast to other GRF basins, the small areal extent and ellipsoid shape of the Fossil Basin focussed terrestrial and freshwater inputs into the lake, resulting in ideal conditions for preservation of an exceptional fossil record.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.