{"title":"Zn(II) and Cd(II) complexes of dithiocarbamate ligands: synthesis, characterization, anticancer, and theoretical studies","authors":"","doi":"10.1080/17415993.2024.2384751","DOIUrl":null,"url":null,"abstract":"<div><p>A potassium 4-(ethoxycarbonyl)phenyldithiocarbamate, (4-etphdtc), and 6-ethoxybenzothiazol)-dithiocarbamate, (6-etbedtc), ligands have been isolated and four metal dithiocarbamate complexes of the type [M(4-etphdtc)<sub>2</sub>] and [M(6-etbedtc)<sub>2</sub>] (M = Zn, Cd;) were synthesized and characterized by elemental analysis and spectroscopic techniques (FT-IR,<sup>1</sup>H and<sup>13</sup>C{<sup>1</sup>H}-NMR, HRMS, UV–vis). Thermogravimetric studies of all four complexes were performed and the final product of the thermal decomposition was metal sulfides. The theoretical study with density functional theory (DFT) has been utilized to optimize the structures of the complexes for HOMO–LUMO energy calculation. Non-bonding orbitals (NBO) analysis was performed to determine the numerous hyper-conjugative interactions responsible for the stability of the compound. In addition, Molecular Electrostatic Potential (MEP) analysis was conducted to identify the compounds’ electron-rich, electron-poor, reactive sites, and bonding characteristics. The Electron Localization Function (ELF), and AIM Charges are also calculated. <em>In vitro</em> cytotoxicity, the complexes were examined against cervical cancer cells (HeLa) to assess their reactivity. Molecular docking studies were conducted to confirm the biological activity by simulating the binding orientation and affinity of the ligands and their complexes against VEGFR-2 kinase, The investigated ligands interact with the binding site as; hydrophilic (Lys868, Glu885, His1026, Cys1045, and Asp1046) and hydrophobic (Val889 and Leu889) for 4-etphdtc; hydrophilic (Lys868, Glu885, Cys1045, and Asp1046) and hydrophobic (Val889, Leu889, Leu1035, and Phe1047) for 6-etphdtc<sub>.</sub> The calculated binding free energy values for Zn(4-etphdtc)<sub>2</sub> and Zn(6-etphdtc)<sub>2</sub>complexes are – 9.700 kcal/mol, – 10.003 kcal/mol, respectively.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599324000254","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A potassium 4-(ethoxycarbonyl)phenyldithiocarbamate, (4-etphdtc), and 6-ethoxybenzothiazol)-dithiocarbamate, (6-etbedtc), ligands have been isolated and four metal dithiocarbamate complexes of the type [M(4-etphdtc)2] and [M(6-etbedtc)2] (M = Zn, Cd;) were synthesized and characterized by elemental analysis and spectroscopic techniques (FT-IR,1H and13C{1H}-NMR, HRMS, UV–vis). Thermogravimetric studies of all four complexes were performed and the final product of the thermal decomposition was metal sulfides. The theoretical study with density functional theory (DFT) has been utilized to optimize the structures of the complexes for HOMO–LUMO energy calculation. Non-bonding orbitals (NBO) analysis was performed to determine the numerous hyper-conjugative interactions responsible for the stability of the compound. In addition, Molecular Electrostatic Potential (MEP) analysis was conducted to identify the compounds’ electron-rich, electron-poor, reactive sites, and bonding characteristics. The Electron Localization Function (ELF), and AIM Charges are also calculated. In vitro cytotoxicity, the complexes were examined against cervical cancer cells (HeLa) to assess their reactivity. Molecular docking studies were conducted to confirm the biological activity by simulating the binding orientation and affinity of the ligands and their complexes against VEGFR-2 kinase, The investigated ligands interact with the binding site as; hydrophilic (Lys868, Glu885, His1026, Cys1045, and Asp1046) and hydrophobic (Val889 and Leu889) for 4-etphdtc; hydrophilic (Lys868, Glu885, Cys1045, and Asp1046) and hydrophobic (Val889, Leu889, Leu1035, and Phe1047) for 6-etphdtc. The calculated binding free energy values for Zn(4-etphdtc)2 and Zn(6-etphdtc)2complexes are – 9.700 kcal/mol, – 10.003 kcal/mol, respectively.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.