Global dynamics of a two-stage structured diffusive population model in time-periodic and spatially heterogeneous environments

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
H. M. Gueguezo, T. J. Doumatè, R. B. Salako
{"title":"Global dynamics of a two-stage structured diffusive population model in time-periodic and spatially heterogeneous environments","authors":"H. M. Gueguezo,&nbsp;T. J. Doumatè,&nbsp;R. B. Salako","doi":"10.1111/sapm.12750","DOIUrl":null,"url":null,"abstract":"<p>This work examines the global dynamics of classical solutions of a two-stage (juvenile–adult) reaction–diffusion population model in time-periodic and spatially heterogeneous environments. It is shown that the sign of the principal eigenvalue <span></span><math>\n <semantics>\n <msub>\n <mi>λ</mi>\n <mo>∗</mo>\n </msub>\n <annotation>$\\lambda _*$</annotation>\n </semantics></math> of the time-periodic linearized system at the trivial solution completely determines the persistence of the species. Moreover, when <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mo>∗</mo>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda _*&amp;gt;0$</annotation>\n </semantics></math>, there is at least one time-periodic positive entire solution. A fairly general sufficient condition ensuring the uniqueness and global stability of the positive time-periodic solution is obtained. In particular, classical solutions eventually stabilize at the unique time-periodic positive solutions if either each subgroup's intrastage growth and interstage competition rates are proportional, or the environment is temporally homogeneous and both subgroups diffuse slowly. In the latter scenario, the asymptotic profile of steady states with respect to small diffusion rates is established.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12750","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the global dynamics of classical solutions of a two-stage (juvenile–adult) reaction–diffusion population model in time-periodic and spatially heterogeneous environments. It is shown that the sign of the principal eigenvalue λ $\lambda _*$ of the time-periodic linearized system at the trivial solution completely determines the persistence of the species. Moreover, when λ > 0 $\lambda _*&gt;0$ , there is at least one time-periodic positive entire solution. A fairly general sufficient condition ensuring the uniqueness and global stability of the positive time-periodic solution is obtained. In particular, classical solutions eventually stabilize at the unique time-periodic positive solutions if either each subgroup's intrastage growth and interstage competition rates are proportional, or the environment is temporally homogeneous and both subgroups diffuse slowly. In the latter scenario, the asymptotic profile of steady states with respect to small diffusion rates is established.

时间周期性和空间异质性环境中两阶段结构化扩散种群模型的全局动力学
这项研究探讨了在时间周期性和空间异质性环境中两阶段(幼年-成年)反应-扩散种群模型经典解的全局动力学。研究表明,时间周期线性化系统在三元解处的主特征值的符号完全决定了物种的持久性。此外,当 ,至少存在一个时间周期正全解。我们得到了一个相当普遍的充分条件,确保正的时间周期解的唯一性和全局稳定性。特别是,如果每个子群的阶段内增长率和阶段间竞争率成正比,或者环境在时间上是同质的,并且两个子群的扩散速度都很慢,那么经典解最终会稳定在唯一的时间周期正解上。在后一种情况下,建立了关于小扩散率的稳态渐近曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信