Chaotic behaviors and stability analysis of pure‐cubic nonlinear Schrödinger equation with full nonlinearity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yaxi Li, Yue Kai
{"title":"Chaotic behaviors and stability analysis of pure‐cubic nonlinear Schrödinger equation with full nonlinearity","authors":"Yaxi Li, Yue Kai","doi":"10.1002/mma.10374","DOIUrl":null,"url":null,"abstract":"This paper explores the pure‐cubic nonlinear Schrödinger equation (PC‐NLSE) with different nonlinearities. According to qualitative analysis, we get the dynamic systems and show that solitons and periodic solutions exist. The corresponding traveling wave solutions of these equations are constructed to demonstrate the correctness of qualitative analysis, and some solutions are initially given. In particular, a special kind of soliton solution, the Gaussian soliton, is constructed, which is rarely identified in non‐logarithmic equation. Next, the solitons stability and modulation instability (MI) of PC‐NLSE with two types of nonlinearity are discussed. Finally, by adding perturbed terms to the dynamic systems, we obtain the largest Lyapunov exponents and the phase diagrams of the equation, which proves there are the chaotic behaviors in PC‐NLSE. To the best of our knowledge, the Gaussian solitons, stability analysis and chaotic behaviors we obtained are first presented, which improves the study and proposes a new direction for the future researches on PC‐NLSE.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the pure‐cubic nonlinear Schrödinger equation (PC‐NLSE) with different nonlinearities. According to qualitative analysis, we get the dynamic systems and show that solitons and periodic solutions exist. The corresponding traveling wave solutions of these equations are constructed to demonstrate the correctness of qualitative analysis, and some solutions are initially given. In particular, a special kind of soliton solution, the Gaussian soliton, is constructed, which is rarely identified in non‐logarithmic equation. Next, the solitons stability and modulation instability (MI) of PC‐NLSE with two types of nonlinearity are discussed. Finally, by adding perturbed terms to the dynamic systems, we obtain the largest Lyapunov exponents and the phase diagrams of the equation, which proves there are the chaotic behaviors in PC‐NLSE. To the best of our knowledge, the Gaussian solitons, stability analysis and chaotic behaviors we obtained are first presented, which improves the study and proposes a new direction for the future researches on PC‐NLSE.
全非线性纯立方非线性薛定谔方程的混沌行为和稳定性分析
本文探讨了具有不同非线性的纯立方非线性薛定谔方程(PC-NLSE)。根据定性分析,我们得到了动态系统,并证明了孤子和周期解的存在。为了证明定性分析的正确性,我们构建了这些方程的相应行波解,并初步给出了一些解。特别是构建了一种特殊的孤子解--高斯孤子,这在非对数方程中很少被发现。接着,讨论了具有两种非线性的 PC-NLSE 的孤子稳定性和调制不稳定性(MI)。最后,通过在动态系统中添加扰动项,我们得到了最大的 Lyapunov 指数和方程的相图,证明 PC-NLSE 中存在混沌行为。据我们所知,我们首次提出了高斯孤子、稳定性分析和混沌行为,从而改进了研究,并为 PC-NLSE 的未来研究提出了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信