{"title":"Substitution of an isovalent Te-ion in SnSe thin films for tuning optoelectrical properties","authors":"Prosenjit Sarkar, Nisha","doi":"10.1016/j.jpcs.2024.112226","DOIUrl":null,"url":null,"abstract":"<div><p>In present work, SnSe<sub>1-x</sub>Te<sub>x</sub> thin films with varying Te concentrations were deposited on glass substrate through thermal evaporation technique. SnSe<sub>1-x</sub>Te<sub>x</sub> thin films were characterized using X-ray diffraction (XRD), atomic force microcopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–Vis NIR spectroscopy and room-temperature hall measurements technique. XRD patterns revealed that all the samples had a polycrystalline orthorhombic structure. Additionally, a low level of Te impurity improved the crystalline quality of the SnSe thin films. AFM images showed a noticeable alteration in the surface structure of the SnSe thin films caused by Te doping. UV–Vis NIR spectroscopy was employed to assess the optical characteristics of SnSe<sub>1-x</sub>Te<sub>x</sub> thin films, revealing a variation in the optical band gap energy (E<sub>g</sub>) between 1.75 and 1.89 eV, attributed to Te doping. The Hall effect measurement revealed n-type conductivity, and the carrier concentration decreased as the Te dopant concentration increased, corresponding to a decrease in antisite SnSe defects. The experimental findings suggest that adding a moderate amount of Te is a beneficial method for enhancing the optical and electrical properties of SnSe films. Furthermore, the Schottky device parameters of the Ag/SnSe<sub>1-x</sub>Te<sub>x</sub>/Al:ZnO structure were established by analyzing the temperature-dependent Current-Voltage (I–V-T) characteristics through the thermionic emission current transport mechanism.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724003615","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In present work, SnSe1-xTex thin films with varying Te concentrations were deposited on glass substrate through thermal evaporation technique. SnSe1-xTex thin films were characterized using X-ray diffraction (XRD), atomic force microcopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–Vis NIR spectroscopy and room-temperature hall measurements technique. XRD patterns revealed that all the samples had a polycrystalline orthorhombic structure. Additionally, a low level of Te impurity improved the crystalline quality of the SnSe thin films. AFM images showed a noticeable alteration in the surface structure of the SnSe thin films caused by Te doping. UV–Vis NIR spectroscopy was employed to assess the optical characteristics of SnSe1-xTex thin films, revealing a variation in the optical band gap energy (Eg) between 1.75 and 1.89 eV, attributed to Te doping. The Hall effect measurement revealed n-type conductivity, and the carrier concentration decreased as the Te dopant concentration increased, corresponding to a decrease in antisite SnSe defects. The experimental findings suggest that adding a moderate amount of Te is a beneficial method for enhancing the optical and electrical properties of SnSe films. Furthermore, the Schottky device parameters of the Ag/SnSe1-xTex/Al:ZnO structure were established by analyzing the temperature-dependent Current-Voltage (I–V-T) characteristics through the thermionic emission current transport mechanism.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.