Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Cailing Fan, Niaz Ahmad, Tinglu Song, Chaoyuan Zeng, Xiaoxiao Liang, Qinxi Dong, Wen Yang
{"title":"Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries","authors":"Cailing Fan, Niaz Ahmad, Tinglu Song, Chaoyuan Zeng, Xiaoxiao Liang, Qinxi Dong, Wen Yang","doi":"10.1007/s12274-024-6871-3","DOIUrl":null,"url":null,"abstract":"<p>Sulfide-based solid-state electrolytes (SSEs) with high Li<sup>+</sup> conductivity (<span>\\(\\sigma_{\\text{Li}^{+}}\\)</span>) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the <i>in-situ</i> development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub> glass-ceramic electrolyte (Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>-5LiF-3Li<sub>3</sub>N-gce) achieved superior ionic (4.33 mS·cm<sup>−1</sup>) and lowest electronic conductivity of 4.33 × 10<sup>−10</sup> S·cm<sup>−1</sup> and thus, offered superior critical current density of 0.90 mA·cm<sup>−2</sup> (2.5 times &gt; Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>) at room temperature (RT). Notably, Li//Li cell with Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm<sup>−2</sup> credited to robust and highly conductive SEI (<i>in-situ</i>) enriched with LiF and Li<sub>3</sub>N species. Li<sub>3</sub>N’s wettability renders SEI to be highly Li<sup>+</sup> conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li<sup>+</sup> kinetics. Consequently, LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA)/Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g<sup>−1</sup> with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm<sup>−2</sup> over 165 cycles at RT.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6871-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide-based solid-state electrolytes (SSEs) with high Li+ conductivity (\(\sigma_{\text{Li}^{+}}\)) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the in-situ development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li7P3S11, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li6.58P2.76N0.03S10.12F0.05 glass-ceramic electrolyte (Li7P3S11-5LiF-3Li3N-gce) achieved superior ionic (4.33 mS·cm−1) and lowest electronic conductivity of 4.33 × 10−10 S·cm−1 and thus, offered superior critical current density of 0.90 mA·cm−2 (2.5 times > Li7P3S11) at room temperature (RT). Notably, Li//Li cell with Li6.58P2.76N0.03S10.12F0.05-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm−2 credited to robust and highly conductive SEI (in-situ) enriched with LiF and Li3N species. Li3N’s wettability renders SEI to be highly Li+ conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li+ kinetics. Consequently, LiNi0.8Co0.15Al0.05O2 (NCA)/Li6.58P2.76N0.03S10.12F0.05-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g−1 with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm−2 over 165 cycles at RT.

Abstract Image

锂导电固态电解质夹层的电解质设计,实现全固态锂金属电池的基准性能
硫化物固态电解质(SSE)具有高Li+电导率(\(\sigma_\text{Li}^{+}}\)和微小的晶界,在全固态锂金属电池(ASSLMB)中具有巨大的应用潜力。然而,硫化物电解质/锂金属负极界面上离子-电子导电固态电解质混合相(SEI)的原位发展会导致锂电沉积不均匀,从而引起锂枝晶和空洞的形成,严重恶化全固态锂金属电池(ASSLMB)。在此,我们提出了一种双阴离子(如 F 和 N)掺杂 Li7P3S11 的策略,结合 SEI 的化学性质调整其成分。因此,新型 Li6.58P2.76N0.03S10.12F0.05 玻璃陶瓷电解质(Li7P3S11-5LiF-3Li3N-gce)在室温(RT)下实现了卓越的离子电导率(4.33 mS-cm-1)和最低的电子电导率(4.33 × 10-10 S-cm-1),临界电流密度达到 0.90 mA-cm-2(是 Li7P3S11 的 2.5 倍)。值得注意的是,使用 Li6.58P2.76N0.03S10.12F0.05-gce 的锂//锂电池在 0.2 和 0.3 mA-cm-2 下分别稳定循环 1000 和 600 小时,这归功于富含 LiF 和 Li3N 物种的强健高导电 SEI(原位)。Li3N 的润湿性使 SEI 具有高度的 Li+ 导电性,确保了亲密的界面接触,阻止了还原反应,防止了锂枝晶的产生,并促进了快速的 Li+ 动力学。因此,LiNi0.8Co0.15Al0.05O2(NCA)/Li6.58P2.76N0.03S10.12F0.05-gce/Li 电池的首次可逆容量为 200.8/240.1 mAh-g-1,库仑效率为 83.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信