{"title":"Excellent laccase-like activity of melamine modified Cu-NH2-BDC and selective sensing analyses toward phenols and amines","authors":"Haimeng Qiao, Hongtian Yang, Yide Han, Yufeng Liu, Ying Zhang, Xia Zhang","doi":"10.1007/s12274-024-6888-7","DOIUrl":null,"url":null,"abstract":"<p>Nanozymes based on metal-organic frameworks (MOFs) have been concentrated on due to their naturally high-disperse metal active sites and the adjustable coordination chemistry. In this work, an N-rich melamine (Mel) was introduced into the Cu-MOF composed of copper(II) nitrate and 2-aminoterephthalic acid (Cu-NH<sub>2</sub>-BDC-Mel) to mimic the laccase, which enzyme-like activities were assessed and applied in sensing analyses toward several phenols and amines. Compared to unmodified Cu-NH<sub>2</sub>-BDC, the resulting Cu-NH<sub>2</sub>-BDC-Mel exhibits enhanced laccase-like activity, superior stability and catalytic kinetics. It is demonstrated that melamine-doping has increased nitrogen content as well as the surface area, as a result, exhibits a lower Michaelis–Menten constant (<i>K</i><sub>m</sub>) (0.1877 mM) and higher maximum reaction rate (<i>V</i><sub>max</sub>) (1.7933 × 10<sup>−3</sup> mM·min<sup>−1</sup>) in comparison with that of natural laccase. Based on that, an efficient colorimetric sensing strategy for several phenols and amines was built up with excellent selectivity and anti-interference by using the laccase-like Cu-NH<sub>2</sub>-BDC-Mel, the detection limits are 3.51 µM of adrenaline and 4.41 µM of dopamine. The work broadens the prospect development of bio-colorimetric sensing based on the ligand-modified Cu-MOFs nanozymes catalysis.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"295 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6888-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes based on metal-organic frameworks (MOFs) have been concentrated on due to their naturally high-disperse metal active sites and the adjustable coordination chemistry. In this work, an N-rich melamine (Mel) was introduced into the Cu-MOF composed of copper(II) nitrate and 2-aminoterephthalic acid (Cu-NH2-BDC-Mel) to mimic the laccase, which enzyme-like activities were assessed and applied in sensing analyses toward several phenols and amines. Compared to unmodified Cu-NH2-BDC, the resulting Cu-NH2-BDC-Mel exhibits enhanced laccase-like activity, superior stability and catalytic kinetics. It is demonstrated that melamine-doping has increased nitrogen content as well as the surface area, as a result, exhibits a lower Michaelis–Menten constant (Km) (0.1877 mM) and higher maximum reaction rate (Vmax) (1.7933 × 10−3 mM·min−1) in comparison with that of natural laccase. Based on that, an efficient colorimetric sensing strategy for several phenols and amines was built up with excellent selectivity and anti-interference by using the laccase-like Cu-NH2-BDC-Mel, the detection limits are 3.51 µM of adrenaline and 4.41 µM of dopamine. The work broadens the prospect development of bio-colorimetric sensing based on the ligand-modified Cu-MOFs nanozymes catalysis.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.