Hydrogen Generation by Photolysis of Water Vis-à-Vis Other Conventional and Advanced Non-conventional Methods of Hydrogen Production—A Review

IF 3.9 3区 化学 Q2 POLYMER SCIENCE
Mohammed Ahmaruzzaman, Soumya Ranjan Mishra, Vishal Gadore, Durlabh Kumar Sharma
{"title":"Hydrogen Generation by Photolysis of Water Vis-à-Vis Other Conventional and Advanced Non-conventional Methods of Hydrogen Production—A Review","authors":"Mohammed Ahmaruzzaman, Soumya Ranjan Mishra, Vishal Gadore, Durlabh Kumar Sharma","doi":"10.1007/s10904-024-03272-4","DOIUrl":null,"url":null,"abstract":"<p>To address the world’s energy concerns and make the transition to a sustainable future, hydrogen, as a clean and adaptable energy carrier, has enormous promise. The drawbacks of hydrogen are thoroughly examined in this article, including production-related carbon emissions and security issues. To overcome these obstacles and realize a hydrogen-based economy that contributes to sustainable development objectives and mitigates climate change, interdisciplinary partnerships, legislative interventions, and technological developments are required. Moreover, numerous hydrogen production techniques are discussed, including standard and unconventional ways. In terms of unconventional methods, photocatalytic water splitting stands out as a cutting-edge innovation that makes use of nanomaterials as catalysts to collect solar energy and fuel the water-splitting reaction. The review focuses on the synthesis, characterization, and hydrogen production efficiency of current developments in photocatalytic materials. A thorough overview of hydrogen generation techniques is provided, mainly focusing on photocatalytic water-splitting using nanomaterials. It offers valuable insights for academics, policymakers, and stakeholders looking to promote the integration of hydrogen into a sustainable energy landscape by looking at the color coding of hydrogen production, storage systems, hydrogen utilization, and related issues.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03272-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the world’s energy concerns and make the transition to a sustainable future, hydrogen, as a clean and adaptable energy carrier, has enormous promise. The drawbacks of hydrogen are thoroughly examined in this article, including production-related carbon emissions and security issues. To overcome these obstacles and realize a hydrogen-based economy that contributes to sustainable development objectives and mitigates climate change, interdisciplinary partnerships, legislative interventions, and technological developments are required. Moreover, numerous hydrogen production techniques are discussed, including standard and unconventional ways. In terms of unconventional methods, photocatalytic water splitting stands out as a cutting-edge innovation that makes use of nanomaterials as catalysts to collect solar energy and fuel the water-splitting reaction. The review focuses on the synthesis, characterization, and hydrogen production efficiency of current developments in photocatalytic materials. A thorough overview of hydrogen generation techniques is provided, mainly focusing on photocatalytic water-splitting using nanomaterials. It offers valuable insights for academics, policymakers, and stakeholders looking to promote the integration of hydrogen into a sustainable energy landscape by looking at the color coding of hydrogen production, storage systems, hydrogen utilization, and related issues.

Abstract Image

水的光解制氢与其他常规和先进的非常规制氢方法对比--综述
为解决世界能源问题并向可持续发展的未来过渡,氢作为一种清洁且适应性强的能源载体,具有巨大的发展前景。本文深入探讨了氢的缺点,包括与生产相关的碳排放和安全问题。为了克服这些障碍,实现以氢为基础的经济,促进可持续发展目标并减缓气候变化,需要跨学科合作、立法干预和技术发展。此外,还讨论了多种制氢技术,包括标准和非常规方法。在非常规方法方面,光催化分水技术是一项前沿创新,它利用纳米材料作为催化剂,收集太阳能并为分水反应提供燃料。这篇综述重点介绍了光催化材料的合成、表征和当前发展的制氢效率。文章全面概述了制氢技术,主要侧重于利用纳米材料进行光催化水分离。通过对氢气生产、储存系统、氢气利用及相关问题的色彩编码,该书为希望促进氢气融入可持续能源领域的学术界、决策者和利益相关者提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信