{"title":"Determining plastic slips in rate-independent crystal plasticity models through machine learning algorithms","authors":"Zhiwen Wang , Xianjia Chen , Jici Wen , Yujie Wei","doi":"10.1016/j.eml.2024.102216","DOIUrl":null,"url":null,"abstract":"<div><p>Dislocation slip-based crystal plasticity models have been a great success in connecting the fundamental physics with the macroscopic deformation of crystalline materials. Pioneered by Taylor in his work on “plastic strain in metals” (Taylor, 1938), and further advanced by Bishop and Hill (1951a, 1951b), the Taylor–Bishop–Hill theory laid the foundation of today’s constitutive models on crystal plasticity. An intriguing part of those modeling is to determine the active slip systems—which system to be involved in and how much it contributes to the deformation. In this paper, we developed a machine learning-based algorithm to determine accurately and efficiently the active slip systems in crystal plasticity constitutive models. Applications to the common three polycrystalline metals, face-centered cubic (FCC) copper, body-centered cubic (BCC) α-iron, and hexagonal close-packed (HCP) AZ31B, demonstrate that even a simple neural network could give rise to accurate and efficient results in comparing with traditional routines. There seems to be plenty of space for further reducing the computation time and hence scaling up the simulating samples.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102216"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dislocation slip-based crystal plasticity models have been a great success in connecting the fundamental physics with the macroscopic deformation of crystalline materials. Pioneered by Taylor in his work on “plastic strain in metals” (Taylor, 1938), and further advanced by Bishop and Hill (1951a, 1951b), the Taylor–Bishop–Hill theory laid the foundation of today’s constitutive models on crystal plasticity. An intriguing part of those modeling is to determine the active slip systems—which system to be involved in and how much it contributes to the deformation. In this paper, we developed a machine learning-based algorithm to determine accurately and efficiently the active slip systems in crystal plasticity constitutive models. Applications to the common three polycrystalline metals, face-centered cubic (FCC) copper, body-centered cubic (BCC) α-iron, and hexagonal close-packed (HCP) AZ31B, demonstrate that even a simple neural network could give rise to accurate and efficient results in comparing with traditional routines. There seems to be plenty of space for further reducing the computation time and hence scaling up the simulating samples.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.