Yang Bai, Ruijia Tian, Kexuan Sun, Chang Liu, Xiting Lang, Ming Yang, Yuanyuan Meng, Chuanxiao Xiao, Yaohua Wang, Xiaoyi Lu, Jingnan Wang, Haibin Pan, Zhenhua Song, Shujing Zhou and Ziyi Ge
{"title":"Decoupling light- and oxygen-induced degradation mechanisms of Sn–Pb perovskites in all perovskite tandem solar cells†","authors":"Yang Bai, Ruijia Tian, Kexuan Sun, Chang Liu, Xiting Lang, Ming Yang, Yuanyuan Meng, Chuanxiao Xiao, Yaohua Wang, Xiaoyi Lu, Jingnan Wang, Haibin Pan, Zhenhua Song, Shujing Zhou and Ziyi Ge","doi":"10.1039/D4EE02427C","DOIUrl":null,"url":null,"abstract":"<p >Efficiencies of all-perovskite tandem solar cells are dominantly constrained by the challenges pertaining to defects and stability within tin–lead (Sn–Pb) perovskite sub-cells. On top of the well-studied oxygen oxidation, defects related to iodide and the consequent generation of I<small><sub>2</sub></small> upon light illumination pose significant degradation risks, leading to Sn<small><sup>2+</sup></small> → Sn<small><sup>4+</sup></small> oxidation. To address this, we screen phenylhydrazine cation (PEH<small><sup>+</sup></small>)-based additives of varying polarities, which strongly coordinate with Sn for reinforcing the Sn–I bond, and interacting electrostatically with negatively charged defects (V<small><sub>Sn</sub></small>, V<small><sub>FA</sub></small>, I<small><sub>Sn</sub></small>, and I<small><sup>−</sup></small><small><sub>i</sub></small>). The synergistic effects suppress the photo-induced formation of I<small><sub>2</sub></small> and the subsequent oxidation of Sn–Pb perovskites, circumventing the stability concerns of narrow bandgap (NBG) perovskite solar cells (PSCs) under operational conditions. The reducing agent 2-mercaptobenzimidazole (MBI) was further introduced into the precursor solution, which not only demonstrates strong resistance to oxygen erosion, but also reduces the deep-level defect density of the Sn–Pb perovskites. Consequently, single-junction Sn–Pb cells achieve a champion efficiency of 23.0%. The enhanced light stability allows these cells to retain 89.4% of their initial efficiency after 400 hours of continuous operation, as assessed by tracking the maximum power point (MPP). We further integrated the Sn–Pb perovskite into a two-terminal (2T) monolithic all-perovskite tandem cell and achieved a PCE of 27.9% (27.2% certified). Meanwhile, the encapsulated tandem device maintained 90.3% of its initial PCE after 300 h through MPP tracking. The work offers new ideas for tackling the stability issues related to light-triggered oxidation.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 22","pages":" 8557-8569"},"PeriodicalIF":30.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee02427c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02427c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficiencies of all-perovskite tandem solar cells are dominantly constrained by the challenges pertaining to defects and stability within tin–lead (Sn–Pb) perovskite sub-cells. On top of the well-studied oxygen oxidation, defects related to iodide and the consequent generation of I2 upon light illumination pose significant degradation risks, leading to Sn2+ → Sn4+ oxidation. To address this, we screen phenylhydrazine cation (PEH+)-based additives of varying polarities, which strongly coordinate with Sn for reinforcing the Sn–I bond, and interacting electrostatically with negatively charged defects (VSn, VFA, ISn, and I−i). The synergistic effects suppress the photo-induced formation of I2 and the subsequent oxidation of Sn–Pb perovskites, circumventing the stability concerns of narrow bandgap (NBG) perovskite solar cells (PSCs) under operational conditions. The reducing agent 2-mercaptobenzimidazole (MBI) was further introduced into the precursor solution, which not only demonstrates strong resistance to oxygen erosion, but also reduces the deep-level defect density of the Sn–Pb perovskites. Consequently, single-junction Sn–Pb cells achieve a champion efficiency of 23.0%. The enhanced light stability allows these cells to retain 89.4% of their initial efficiency after 400 hours of continuous operation, as assessed by tracking the maximum power point (MPP). We further integrated the Sn–Pb perovskite into a two-terminal (2T) monolithic all-perovskite tandem cell and achieved a PCE of 27.9% (27.2% certified). Meanwhile, the encapsulated tandem device maintained 90.3% of its initial PCE after 300 h through MPP tracking. The work offers new ideas for tackling the stability issues related to light-triggered oxidation.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).