{"title":"Optical Chirplet Transform for Observing Pulse Ultrafast Structures","authors":"Jingxuan Sun, Yiqing Shu, Jianqing Li, Yanqi Ge, Weicheng Chen","doi":"10.1021/acsphotonics.4c01011","DOIUrl":null,"url":null,"abstract":"The accurate measurement of ultrafast pulses is extremely important in both academic and industrial fields. Revealing fast- and slow-varying pulse information simultaneously still remains a considerable challenge in ultrafast science. We propose a novel ultrafast measurement method, termed the “optical chirplet transform for observing pulse ultrafast structures (OCTOPUS)”, to measure the spectrotemporal transient information on pulses. This approach slices a measured pulse into a series of orthogonal chirplet bases and transforms it into the corresponding Fourier-transform-limited pulse (FTLP) through a phase editing process, in which a programmable waveshaper iteratively achieves the mirror image of the measured pulse’s phase spectrum relative to the theoretical FTLP. As a result, the ultrafast pulse field is accurately reconstructed assisted by phase spectrum retrieval. This method can both reconstruct transient fast-varying pulse fields with higher resolution and accuracy and measure other pulse information such as phase distribution and slow-varying envelope, advancing progress in ultrafast measurement technology.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"215 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01011","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate measurement of ultrafast pulses is extremely important in both academic and industrial fields. Revealing fast- and slow-varying pulse information simultaneously still remains a considerable challenge in ultrafast science. We propose a novel ultrafast measurement method, termed the “optical chirplet transform for observing pulse ultrafast structures (OCTOPUS)”, to measure the spectrotemporal transient information on pulses. This approach slices a measured pulse into a series of orthogonal chirplet bases and transforms it into the corresponding Fourier-transform-limited pulse (FTLP) through a phase editing process, in which a programmable waveshaper iteratively achieves the mirror image of the measured pulse’s phase spectrum relative to the theoretical FTLP. As a result, the ultrafast pulse field is accurately reconstructed assisted by phase spectrum retrieval. This method can both reconstruct transient fast-varying pulse fields with higher resolution and accuracy and measure other pulse information such as phase distribution and slow-varying envelope, advancing progress in ultrafast measurement technology.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.