Optimizing the affinity selection mass spectrometry workflow for efficient identification and ranking of potent USP1 inhibitors

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Yi Zhao, Meixian Liu, Tian Qin, Yongqiang Peng, Guang Lin, Chao Che, Zhendong Zhu
{"title":"Optimizing the affinity selection mass spectrometry workflow for efficient identification and ranking of potent USP1 inhibitors","authors":"Yi Zhao,&nbsp;Meixian Liu,&nbsp;Tian Qin,&nbsp;Yongqiang Peng,&nbsp;Guang Lin,&nbsp;Chao Che,&nbsp;Zhendong Zhu","doi":"10.1016/j.slast.2024.100174","DOIUrl":null,"url":null,"abstract":"<div><p>An optimized Affinity Selection-Mass Spectrometry (AS-MS) workflow has been developed for the efficient identification of potent USP1 inhibitors. USP1 was immobilized on agarose beads, ensuring low small molecule retention, efficient protein capture, and protein stability. The binding affinity of 49 compounds to USP1 was evaluated using the optimized AS-MS method, calculating binding index (BI) values for each compound. Biochemical inhibition assays validated the AS-MS results, revealing a potential correlation between higher BI values and lower IC<sub>50</sub> values. This optimized workflow enables rapid identification of high-quality USP1 inhibitor hits, facilitating structure-activity relationship studies and accelerating the discovery of potential cancer therapeutics.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 4","pages":"Article 100174"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000566/pdfft?md5=04d32317879afbb2ecd681a335b9fb7b&pid=1-s2.0-S2472630324000566-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

An optimized Affinity Selection-Mass Spectrometry (AS-MS) workflow has been developed for the efficient identification of potent USP1 inhibitors. USP1 was immobilized on agarose beads, ensuring low small molecule retention, efficient protein capture, and protein stability. The binding affinity of 49 compounds to USP1 was evaluated using the optimized AS-MS method, calculating binding index (BI) values for each compound. Biochemical inhibition assays validated the AS-MS results, revealing a potential correlation between higher BI values and lower IC50 values. This optimized workflow enables rapid identification of high-quality USP1 inhibitor hits, facilitating structure-activity relationship studies and accelerating the discovery of potential cancer therapeutics.

优化亲和选择质谱工作流程,高效鉴定和筛选强效 USP1 抑制剂。
为有效鉴定强效 USP1 抑制剂,我们开发了一种优化的亲和选择-质谱分析 (AS-MS) 工作流程。USP1 被固定在琼脂糖珠上,确保了低小分子截留率、高效蛋白质捕获和蛋白质稳定性。使用优化的 AS-MS 方法评估了 49 种化合物与 USP1 的结合亲和力,计算了每种化合物的结合指数 (BI) 值。生化抑制试验验证了 AS-MS 的结果,揭示了较高的 BI 值与较低的 IC50 值之间的潜在相关性。这种优化的工作流程能够快速鉴定高质量的 USP1 抑制剂,促进结构-活性关系研究,加快潜在癌症治疗药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信