RhizoMAP: a comprehensive, nondestructive, and sensitive platform for metabolic imaging of the rhizosphere.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Dušan Veličković, Tanya Winkler, Vimal Balasubramanian, Thomas Wietsma, Christopher R Anderton, Amir H Ahkami, Kevin Zemaitis
{"title":"RhizoMAP: a comprehensive, nondestructive, and sensitive platform for metabolic imaging of the rhizosphere.","authors":"Dušan Veličković, Tanya Winkler, Vimal Balasubramanian, Thomas Wietsma, Christopher R Anderton, Amir H Ahkami, Kevin Zemaitis","doi":"10.1186/s13007-024-01249-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Elucidating the intricate structural organization and spatial gradients of biomolecular composition within the rhizosphere is critical to understanding important biogeochemical processes, which include the mechanisms of root-microbe interactions for maintaining sustainable plant ecosystem services. While various analytical methods have been developed to assess the spatial heterogeneity within the rhizosphere, a comprehensive view of the fine distribution of metabolites within the root-soil interface has remained a significant challenge. This is primarily due to the difficulty of maintaining the original spatial organization during sample preparation without compromising its molecular content.</p><p><strong>Results: </strong>In this study, we present a novel approach, RhizoMAP, in which the rhizosphere molecules are imprinted on selected polymer membranes and then spatially profiled using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We enhanced the performance of RhizoMAP by combining the use of two thin (< 20 μm) membranes (polyester and polycarbonate) with distinct MALDI sample preparations. This optimization allowed us to gain insight into the distribution of over 500 different molecules within the rhizosphere of poplar (Populus trichocarpa) grown in rhizoboxes filled with mycorrhizae soil. These two membranes, coupled with three different sample preparation conditions, enabled us to capture the distribution of a wide variety of molecules that included phytohormones, amino acids, sugars, sugar glycosides, polycarboxylic acids components of the Krebs cycle, fatty acids, short aldehydes and ketones, terpenes, volatile organic compounds, fertilizers from the soil, and others. Their spatial distribution varies greatly, with some following root traces, others showing diffusion from roots, some associated with soil particles, and many having distinct hot spots along the plant root or surrounding soil. Moreover, we showed how RhizoMAP can be used to localize the origin of the molecules and molecular transformation during root growth. Finally, we demonstrated the power of RhizoMAP to capture molecular distributions of key metabolites throughout a 20 cm deep rhizosphere.</p><p><strong>Conclusions: </strong>RhizoMAP is a method that provides nondestructive, untargeted, broad, and sensitive metabolite imaging of root-associated molecules, exudates, and soil organic matter throughout the rhizosphere, as demonstrated in a lab-controlled native soil environment.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"117"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01249-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Elucidating the intricate structural organization and spatial gradients of biomolecular composition within the rhizosphere is critical to understanding important biogeochemical processes, which include the mechanisms of root-microbe interactions for maintaining sustainable plant ecosystem services. While various analytical methods have been developed to assess the spatial heterogeneity within the rhizosphere, a comprehensive view of the fine distribution of metabolites within the root-soil interface has remained a significant challenge. This is primarily due to the difficulty of maintaining the original spatial organization during sample preparation without compromising its molecular content.

Results: In this study, we present a novel approach, RhizoMAP, in which the rhizosphere molecules are imprinted on selected polymer membranes and then spatially profiled using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We enhanced the performance of RhizoMAP by combining the use of two thin (< 20 μm) membranes (polyester and polycarbonate) with distinct MALDI sample preparations. This optimization allowed us to gain insight into the distribution of over 500 different molecules within the rhizosphere of poplar (Populus trichocarpa) grown in rhizoboxes filled with mycorrhizae soil. These two membranes, coupled with three different sample preparation conditions, enabled us to capture the distribution of a wide variety of molecules that included phytohormones, amino acids, sugars, sugar glycosides, polycarboxylic acids components of the Krebs cycle, fatty acids, short aldehydes and ketones, terpenes, volatile organic compounds, fertilizers from the soil, and others. Their spatial distribution varies greatly, with some following root traces, others showing diffusion from roots, some associated with soil particles, and many having distinct hot spots along the plant root or surrounding soil. Moreover, we showed how RhizoMAP can be used to localize the origin of the molecules and molecular transformation during root growth. Finally, we demonstrated the power of RhizoMAP to capture molecular distributions of key metabolites throughout a 20 cm deep rhizosphere.

Conclusions: RhizoMAP is a method that provides nondestructive, untargeted, broad, and sensitive metabolite imaging of root-associated molecules, exudates, and soil organic matter throughout the rhizosphere, as demonstrated in a lab-controlled native soil environment.

RhizoMAP:一个全面、无损、灵敏的根圈代谢成像平台。
背景:阐明根瘤菌圈内错综复杂的结构组织和生物分子组成的空间梯度对于了解重要的生物地球化学过程至关重要,其中包括根-微生物相互作用的机制,以维持可持续的植物生态系统服务。虽然已开发出各种分析方法来评估根圈内的空间异质性,但全面了解根-土界面内代谢物的精细分布仍是一项重大挑战。这主要是由于在样品制备过程中很难在不影响其分子含量的情况下保持原有的空间组织:在这项研究中,我们提出了一种新方法 RhizoMAP,即在选定的聚合物膜上印上根瘤分子,然后利用基质辅助激光解吸/电离(MALDI)质谱成像(MSI)技术进行空间剖面分析。我们结合使用了两种薄型膜,从而提高了 RhizoMAP 的性能:RhizoMAP 是一种无损、无目标、广泛且灵敏的代谢物成像方法,可对整个根圈的根相关分子、渗出物和土壤有机物进行成像,这已在实验室控制的原生土壤环境中得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信