Smoothing down interfaces

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Qing Zhao
{"title":"Smoothing down interfaces","authors":"Qing Zhao","doi":"10.1038/s41560-024-01610-x","DOIUrl":null,"url":null,"abstract":"The surfaces of polycrystalline perovskite films impact the long-term performance of perovskite solar cells, yet their microstructure is not well understood. Research now reveals the existence of concave grain structures at the surface of the perovskite layer facing the electron transport layer, and their detrimental effect on the stability of the interface and eventually the devices.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 8","pages":"920-921"},"PeriodicalIF":49.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01610-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The surfaces of polycrystalline perovskite films impact the long-term performance of perovskite solar cells, yet their microstructure is not well understood. Research now reveals the existence of concave grain structures at the surface of the perovskite layer facing the electron transport layer, and their detrimental effect on the stability of the interface and eventually the devices.

Abstract Image

Abstract Image

平滑接口
多晶包晶体薄膜的表面会影响包晶体太阳能电池的长期性能,但人们对其微观结构还不甚了解。现在的研究揭示了在面向电子传输层的过氧化物层表面存在的凹晶粒结构,以及它们对界面稳定性和最终设备的不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信