Chirayu R. Chokshi, Muhammad Vaseem Shaikh, Benjamin Brakel, Martin A. Rossotti, David Tieu, William Maich, Alisha Anand, Shawn C. Chafe, Kui Zhai, Yujin Suk, Agata M. Kieliszek, Petar Miletic, Nicholas Mikolajewicz, David Chen, Jamie D. McNicol, Katherine Chan, Amy H. Y. Tong, Laura Kuhlmann, Lina Liu, Zahra Alizada, Daniel Mobilio, Nazanin Tatari, Neil Savage, Nikoo Aghaei, Shan Grewal, Anish Puri, Minomi Subapanditha, Dillon McKenna, Vladimir Ignatchenko, Joseph M. Salamoun, Jacek M. Kwiecien, Peter Wipf, Elizabeth R. Sharlow, John P. Provias, Jian-Qiang Lu, John S. Lazo, Thomas Kislinger, Yu Lu, Kevin R. Brown, Chitra Venugopal, Kevin A. Henry, Jason Moffat, Sheila K. Singh
{"title":"Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells","authors":"Chirayu R. Chokshi, Muhammad Vaseem Shaikh, Benjamin Brakel, Martin A. Rossotti, David Tieu, William Maich, Alisha Anand, Shawn C. Chafe, Kui Zhai, Yujin Suk, Agata M. Kieliszek, Petar Miletic, Nicholas Mikolajewicz, David Chen, Jamie D. McNicol, Katherine Chan, Amy H. Y. Tong, Laura Kuhlmann, Lina Liu, Zahra Alizada, Daniel Mobilio, Nazanin Tatari, Neil Savage, Nikoo Aghaei, Shan Grewal, Anish Puri, Minomi Subapanditha, Dillon McKenna, Vladimir Ignatchenko, Joseph M. Salamoun, Jacek M. Kwiecien, Peter Wipf, Elizabeth R. Sharlow, John P. Provias, Jian-Qiang Lu, John S. Lazo, Thomas Kislinger, Yu Lu, Kevin R. Brown, Chitra Venugopal, Kevin A. Henry, Jason Moffat, Sheila K. Singh","doi":"10.1038/s41591-024-03138-9","DOIUrl":null,"url":null,"abstract":"Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood–brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50–100% of mice. Our study identifies a promising multi-targetable PTP4A–ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors. Functional CRISPR screens in patient-matched pre-treatment and post-treatment glioblastoma models identify the PTP4A–ROBO1 axis as a driver of tumorigenicity and enriched ROBO1 expression in recurrent glioblastoma that can be targeted with CAR T cell therapy.","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":null,"pages":null},"PeriodicalIF":58.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41591-024-03138-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood–brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50–100% of mice. Our study identifies a promising multi-targetable PTP4A–ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors. Functional CRISPR screens in patient-matched pre-treatment and post-treatment glioblastoma models identify the PTP4A–ROBO1 axis as a driver of tumorigenicity and enriched ROBO1 expression in recurrent glioblastoma that can be targeted with CAR T cell therapy.
期刊介绍:
Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors.
Nature Medicine consider all types of clinical research, including:
-Case-reports and small case series
-Clinical trials, whether phase 1, 2, 3 or 4
-Observational studies
-Meta-analyses
-Biomarker studies
-Public and global health studies
Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.