Insights into bacterial metabolism from small RNAs

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kai Papenfort , Gisela Storz
{"title":"Insights into bacterial metabolism from small RNAs","authors":"Kai Papenfort ,&nbsp;Gisela Storz","doi":"10.1016/j.chembiol.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1571-1577"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945624003040","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.

从小规模 RNA 了解细菌的新陈代谢
通过与细菌中的目标 RNA 进行碱基配对而发挥作用的小型调控 RNA(sRNA)的研究一直在稳步发展,特别是随着越来越多的转录组和 RNA-RNA 交互组数据集的出现。多种 sRNAs 的特征描述有助于阐明它们的作用机制,同时这些研究也为蛋白质功能、代谢通量控制以及代谢途径之间的联系提供了见解,我们将在这里讨论这些见解。在描述所获得的代谢洞察力的几个例子时,我们将总结不同类型的碱基配对 sRNA,包括 mRNA 衍生的 sRNA、海绵 RNA、RNA 模拟物和双重功能 RNA,并就未来如何利用 sRNA 信息提出建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信