Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains.
Jing Wang, Dian Jiao, Siliang Yuan, Han Chen, Jingcheng Dai, Xin Wang, Yao Guo, Dongru Qiu
{"title":"Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains.","authors":"Jing Wang, Dian Jiao, Siliang Yuan, Han Chen, Jingcheng Dai, Xin Wang, Yao Guo, Dongru Qiu","doi":"10.1016/j.jhazmat.2024.135370","DOIUrl":null,"url":null,"abstract":"<p><p>Linear alkylbenzene sulfonate (LAS) is one of the most widely used anionic surfactants and a common toxic pollutant in wastewater. This study employed high throughput sequencing to explore the microbial community structure within activated sludge exposed to a high concentration of LAS. Genera such as Pseudomonas, Aeromonas, Thauera and Klebsiella exhibited a significant positive correlation with LAS concentrations. Furthermore, Comamonas and Klebsiella were significantly enriched under the stress of LAS. Moreover, bacterial strains with LAS-degrading capability were isolated and characterized to elucidate the degradation pathways. The Klebsiella pneumoniae isolate L1 could effectively transform more than 60 % of 25 mg/L of LAS within 72 h. Chemical analyses revealed that L1 utilized the LAS sulfonyl group as a sulfur source to support its growth. Genomic and transcriptomic analyses suggested that strain L1 may uptake LAS through the sulfate ABC transport system and remove sulfonate with sulfate and sulfite reductases.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Linear alkylbenzene sulfonate (LAS) is one of the most widely used anionic surfactants and a common toxic pollutant in wastewater. This study employed high throughput sequencing to explore the microbial community structure within activated sludge exposed to a high concentration of LAS. Genera such as Pseudomonas, Aeromonas, Thauera and Klebsiella exhibited a significant positive correlation with LAS concentrations. Furthermore, Comamonas and Klebsiella were significantly enriched under the stress of LAS. Moreover, bacterial strains with LAS-degrading capability were isolated and characterized to elucidate the degradation pathways. The Klebsiella pneumoniae isolate L1 could effectively transform more than 60 % of 25 mg/L of LAS within 72 h. Chemical analyses revealed that L1 utilized the LAS sulfonyl group as a sulfur source to support its growth. Genomic and transcriptomic analyses suggested that strain L1 may uptake LAS through the sulfate ABC transport system and remove sulfonate with sulfate and sulfite reductases.
线性烷基苯磺酸盐(LAS)是使用最广泛的阴离子表面活性剂之一,也是废水中常见的有毒污染物。本研究采用高通量测序技术来探索暴露于高浓度 LAS 的活性污泥中的微生物群落结构。假单胞菌、气单胞菌、Thauera 和克雷伯氏菌等菌属与 LAS 浓度呈显著正相关。此外,在 LAS 的压力下,科莫纳斯菌和克雷伯氏菌的数量明显增加。此外,还分离并鉴定了具有降解 LAS 能力的细菌菌株,以阐明其降解途径。化学分析显示,L1 利用 LAS 磺酰基作为硫源支持其生长。基因组和转录组分析表明,菌株 L1 可通过硫酸盐 ABC 转运系统吸收 LAS,并利用硫酸盐和亚硫酸盐还原酶去除磺酸盐。