{"title":"How to correctly fit an SIR model to data from an SEIR model?","authors":"Wasiur R. KhudaBukhsh , Grzegorz A. Rempała","doi":"10.1016/j.mbs.2024.109265","DOIUrl":null,"url":null,"abstract":"<div><p>In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases.</p><p>This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality.</p><p>To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001251/pdfft?md5=af4ef0b293b05ec276ca8eb18fbf004f&pid=1-s2.0-S0025556424001251-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases.
This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality.
To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.
在流行病学中,现实的疾病动力学通常需要类似于 "易感-暴露-感染-恢复"(SEIR)的模型,因为这些模型考虑了个体感染前的潜伏期。然而,为了分析的可操作性,人们通常使用更简单的易感-感染-恢复(SIR)模型,尽管这些模型缺乏生物真实性。衔接这些模型对于准确估计参数和将模型与观测数据拟合至关重要,尤其是在传染病的群体水平研究中。本文研究了 SEIR 和 SIR 框架的随机版本,并证明 SEIR 模型可以有效地近似于具有随时间变化的感染率和恢复率的 SIR 模型。大群体大数函数定律(FLLN)极限和有限群体浓度不等式的推导支持了这种近似的有效性。为了在实践中应用这一近似值,本文介绍了一种基于动态生存分析(DSA)生存分析框架的参数推断方法。通过模拟实验说明,该方法可将 SIR 模型与更复杂的 SEIR 动态模拟数据进行拟合。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.