High-Performance Method and Architecture for Attention Computation in DNN Inference.

Qi Cheng, Xiaofang Hu, He Xiao, Yue Zhou, Shukai Duan
{"title":"High-Performance Method and Architecture for Attention Computation in DNN Inference.","authors":"Qi Cheng, Xiaofang Hu, He Xiao, Yue Zhou, Shukai Duan","doi":"10.1109/TBCAS.2024.3436837","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, The combination of Attention mechanism and deep learning has a wide range of applications in the field of medical imaging. However, due to its complex computational processes, existing hardware architectures have high resource consumption or low accuracy, and deploying them efficiently to DNN accelerators is a challenge. This paper proposes an online-programmable Attention hardware architecture based on compute-in-memory (CIM) marco, which reduces the complexity of Attention in hardware and improves integration density, energy efficiency, and calculation accuracy. First, the Attention computation process is decomposed into multiple cascaded combinatorial matrix operations to reduce the complexity of its implementation on the hardware side; second, in order to reduce the influence of the non-ideal characteristics of the hardware, an online-programmable CIM architecture is designed to improve calculation accuracy by dynamically adjusting the weights; and lastly, it is verified that the proposed Attention hardware architecture can be applied for the inference of deep neural networks through Spice simulation. Based on the 100nm CMOS process, compared with the traditional Attention hardware architectures, the integrated density and energy efficiency are increased by at least 91.38 times, and latency and computing efficiency are improved by about 12.5 times.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3436837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, The combination of Attention mechanism and deep learning has a wide range of applications in the field of medical imaging. However, due to its complex computational processes, existing hardware architectures have high resource consumption or low accuracy, and deploying them efficiently to DNN accelerators is a challenge. This paper proposes an online-programmable Attention hardware architecture based on compute-in-memory (CIM) marco, which reduces the complexity of Attention in hardware and improves integration density, energy efficiency, and calculation accuracy. First, the Attention computation process is decomposed into multiple cascaded combinatorial matrix operations to reduce the complexity of its implementation on the hardware side; second, in order to reduce the influence of the non-ideal characteristics of the hardware, an online-programmable CIM architecture is designed to improve calculation accuracy by dynamically adjusting the weights; and lastly, it is verified that the proposed Attention hardware architecture can be applied for the inference of deep neural networks through Spice simulation. Based on the 100nm CMOS process, compared with the traditional Attention hardware architectures, the integrated density and energy efficiency are increased by at least 91.38 times, and latency and computing efficiency are improved by about 12.5 times.

DNN 推断中注意力计算的高性能方法和架构
近年来,注意力机制与深度学习的结合在医学影像领域有着广泛的应用。然而,由于其计算过程复杂,现有的硬件架构存在资源消耗大或精度低的问题,如何将其高效地部署到 DNN 加速器上是一个难题。本文提出了一种基于内存计算(CIM)marco 的在线可编程 Attention 硬件架构,降低了 Attention 在硬件上的复杂度,提高了集成密度、能效和计算精度。首先,将Attention计算过程分解为多个级联组合矩阵运算,以降低其在硬件端的实现复杂度;其次,为了降低硬件非理想特性的影响,设计了一种在线可编程CIM架构,通过动态调整权重来提高计算精度;最后,通过Spice仿真验证了所提出的Attention硬件架构可应用于深度神经网络推理。基于 100nm CMOS 工艺,与传统的 Attention 硬件架构相比,集成密度和能效至少提高了 91.38 倍,延迟和计算效率提高了约 12.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信